Abstract:
An electronic device substrate is formed of a thin-plate reinforcing substrate; an external connection wiring layer stacked on the reinforcing substrate, and comprising an electrical insulation provided on the reinforcing substrate, an opening formed in the electrical insulation, a first conductor pattern and a via-hole conductor provided in the opening and formed integrally with each other; and a second conductor pattern formed on the opposite side of the electrical insulation to the reinforcing substrate, and at least partially electrically connected to the via-hole conductor.
Abstract:
The invention provides a method of mounting an electronic component where an electronic component can be reliably electrically-connected to a substrate. A substrate defines a through-hole that extends through the substrate, from connection electrodes formed on the lower surface of the substrate, to the upper surface of the substrate. A low melting point metal is connected to the connection electrodes and fills the through-hole. A bump and the low melting point metal are alloyed and bonded by heating the low melting point metal while pressing the bump formed on an electrode pad of an electronic component, with respect to a front end of the low melting point metal. The active surface of the electronic component is sealed by the upper surface of the substrate.
Abstract:
Methods of manufacturing optical transceiver modules using lead frame connectors that connect optical sub-assemblies to printed circuit boards are disclosed. The lead frame connector includes an electrically insulating case having a first part separated from a second part and a plurality of conductors that are electrically isolated one from another by the electrically insulating case. Each of the plurality of conductors can form an electrical contact restrained in a fixed position with respect to the first part and a contact point extending from the second part. The electrical contact is aligned with and soldered to the leads that protrude from the back end of an optical sub-assembly. The contact points can then be connected to electrical pads on a PCB.
Abstract:
This publication discloses a method for manufacturing an electronic module, in which manufacture commences from an insulating-material sheet (1). At least one recess (2) is made in the sheet (1) and extends through the insulating-material layer (1) as far as the conductive layer on the opposite surface (1a). A component (6) is set in the recess, with its contact surface towards the conductive layer and the component (6) is attached to the conductive layer. After this, a conductive pattern (14) is formed from the conductive pattern closing the recess, which is electrically connected from at least some of the contact areas or contact protrusions of the component (6) set in the recess.
Abstract:
A printed circuit is made by laser projection patterning a metal panel of a substrate, laminating a dielectric layer on the metal panel, laser irradiating the substrate to form vias in the substrate, laser activating a seed coat on the substrate, washing the seed coat from an unpatterned portion of the substrate, forming a patterned build-up layer on the substrate, and etching away a metal plating forming metal protrusions.
Abstract:
This document discusses, among other things, a flexible circuit or other laminate comprising a first conductive layer and a second conductive layer disposed over the first conductive layer. An insulator is disposed between the first and second conductive layers. A conductive via extends through the insulator and electrically connects the first and second conductive layers. The laminate includes a channel in the insulator. In one option, the channel extends at least part way around the via. In another option, the channel extends at least part way between the first and second conductive layers. In another example, a method comprises providing a laminate including at least first and second conductive layers and an insulator disposed therebetween. A via is formed through the insulator. A channel is formed in the insulator at least part way around the via. The channel extends between the first and second conductive layers.
Abstract:
An aspect of the present invention comprises a method of producing a circuit substrate comprising providing a substrate, coating the substrate with a conductive layer, patterning the conductive layer to form at least two circuits joined by a buss-line and forming a slot in the substrate beneath the buss-line. Another aspect of the present invention comprises a circuit substrate with at least two circuits joined by a buss-line and a slot in the substrate beneath the buss-line. Another aspect of the present invention comprises an integrated circuit package with the described circuit substrate.
Abstract:
A multilayer printed wiring board comprises a plurality of insulating layers which is about 100 μm or less in thickness and a plurality of conductor circuits formed on the insulating layers. Each of a plurality of viaholes electrically connecting conductor circuits on the insulating layers to each other is formed tapered inwardly from the surface of the insulating layer and the viaholes are disposed opposite to each other to form a multistage stacked vias.
Abstract:
A multi-layer printed circuit board (PCB) includes a first wire layer, a middle layer above the first wire layer, a second wire layer above the middle layer, and a slanting via formed in the middle layer and the second wire layer. The manufacturing method includes the steps of providing a first wire layer and forming a first wiring on the first wire layer, forming a middle layer on the first wire layer, forming a second wire layer on the middle layer, forming a slanting via in the middle layer and the second wire layer wherein the direction of the slanting via is not orthogonal to the first and the second wire layers, forming a second wiring on the second wire layer by an etching method, and forming an electroplated layer in the via to connect the first wiring and the second wiring.
Abstract:
This document discusses, among other things, a flexible circuit or other laminate comprising a first conductive layer and a second conductive layer disposed over the first conductive layer. An insulator is disposed between the first and second conductive layers. A conductive via extends through the insulator and electrically connects the first and second conductive layers. The laminate includes a channel in the insulator. In one option, the channel extends at least part way around the via. In another option, the channel extends at least part way between the first and second conductive layers. In another example, a method comprises providing a laminate including at least first and second conductive layers and an insulator disposed therebetween. A via is formed through the insulator. A channel is formed in the insulator at least part way around the via. The channel extends between the first and second conductive layers.