Abstract:
A printed circuit board transmission line has an outer conductive wall surrounding an inner dielectric core. The transmission line may be disposed inside a grounded shielding to provide a form of coaxial conductor that mitigates cross talk from adjacent transmission lines and EMI. Further, groups of dielectric-core transmission lines may be disposed within a single grounded shield. For example, edge coupled differential pairs may be disposed in parallel with each other on a plane defined by a layer of the printed circuit board, i.e., side-by-side. Further, broadside-coupled differential pairs of dielectric-core transmission lines may be disposed in parallel with each other in a stack which is orthogonal with the plane defined by a layer of the printed circuit board, i.e., one on top of the other. Further, a plurality of dielectric-core transmission lines which may include all or ones of single-ended lines and differential pairs may be disposed within a single grounded shield.
Abstract:
This invention relates to a capacitive/resistive device, which may be embedded within a layer of a printed wiring board. Embedding the device conserves board surface real estate, and reduces the number of solder connections, thereby increasing reliability. More specifically, the device, comprises a first metallic foil; a second metallic foil; a first electrode formed from the first metallic foil; a dielectric disposed over the first electrode, a resistor element formed on and adjacent to the dielectric; a conductive trace; and a second electrode formed from the second metallic foil and disposed over the dielectric and in electrical contact with the resistor element, wherein the dielectric is disposed between the first electrode and the second electrode and wherein said dielectric comprises an unfilled polymer of dielectric constant less than 4.0. This invention also relates to a method of making the device.
Abstract:
A printed circuit board (PCB) substrate and method for construction of the same. In one embodiment, a first dielectric material is associated with a first current return layer and a second dielectric material is associated with a second current return layer. A first signal path layer is embedded in the first dielectric material and a second signal path layer is embedded in the second dielectric material, wherein the first and second signal path layers are substantially parallel to each other in a stack-up arrangement. An adhesive layer is interposed between the first dielectric material and the second dielectric material.
Abstract:
The invention provides a wiring board with built-in capacitors, that has a multilayer wiring structure and capable of mounting an IC chip thereon. The wiring board with built-in capacitors includes: a first capacitor that is built into the multilayer wiring structure and formed so that an overlapping area between a first lower electrode and a first upper electrode provided on respective surfaces of a first dielectric layer is a predetermined area; and a second capacitor that is built into the multilayer wiring structure along the same plane as the first dielectric layer and formed so that an overlapping area between a second lower electrode and a second upper electrode provided on respective surfaces of a second dielectric layer with the same thickness as the first dielectric layer is different from the predetermined area. The wiring board further includes: a line that electrically connects either one of a power pad for supplying power to the IC chip and a ground pad for grounding the IC chip to either one of the first lower electrode and the second lower electrode; and a line that electrically connects the other of the power pad and the ground pad to the other of the first upper electrode and the second upper electrode.
Abstract:
A printed circuit board (PCB) substrate and method for construction of the same. In one embodiment, a first dielectric material is associated with a first current return layer and a second dielectric material is associated with a second current return layer. A signal path layer is interposed between the first dielectric material and the second dielectric material. An adhesive layer is interposed between the first dielectric material and the second dielectric material such that the adhesive layer is substantially coplanar relative to the signal path layer.
Abstract:
An electrical device includes a plurality of interconnects passing through a plane. The interconnects have a longitudinal axis substantially perpendicular to the plane and including an arrangement pattern which reduces or eliminates cross-talk between nearest neighboring interconnects, wherein the interconnects include a first differentially driven signal conductor pair and at least one other signal conductor, and the arrangement includes the at least one other signal conductor disposed at a substantially same distance from each conductor of the first differentially driven signal conductor pair.
Abstract:
A method of manufacturing a capacitor-embedded low temperature co-fired ceramic substrate, the method including: manufacturing a capacitor part by firing a deposition including at least one high dielectric ceramic sheet to form a capacitor part; providing a plurality of low temperature co-fired green sheets each having at least one of a conductive pattern and a conductive via hole thereon; forming a low temperature co-fired ceramic deposition by depositing the low temperature co-fired green sheets to embed the capacitor part in the low temperature co-fired ceramic deposition, the embedded capacitor part connected to the one of conductive pattern and conductive via hole of an adjacent one of the green sheets; and firing the low temperature co-fired ceramic deposition having the capacitor part embedded therein. The capacitor-embedded low temperature co-fired ceramic substrate may be beneficially employed in various types of capacitor part such as a deposited chip capacitor and a capacitor layer structure.
Abstract:
A power module includes a power switching device and a flexible circuit with first and second traces electrically connected to the switching device, the first and second traces serving as an input signal carrier and an output signal carrier for the switching device.
Abstract:
Disclosed herein is a printed circuit board including embedded capacitors, composed of a polymer condenser laminate including a plurality of polymer condenser layers, each of which has a polymer sheet and a conductor pattern formed on the polymer sheet, and a via hole for interlayer connection therethrough, and a circuit layer formed on either surface or both surfaces of the polymer condenser laminate and having a circuit pattern and a via hole for interlayer connection therethrough. The printed circuit board of the current invention has higher capacitance density per unit area than conventional embedded capacitor printed circuit boards, whereby capacitors having various capacitance values, such as multilayered ceramic capacitors having high capacitance, can be embedded in the printed circuit board, instead of being mounted thereon. Also, a method of manufacturing the printed circuit board including embedded capacitors is provided.
Abstract:
A capacitor structure with a cross-coupling design is provided. In the capacitor structure, conductive lines or electrode plates are coupled together by cross coupling an electrode above or below or aside the other electrode. By cross coupling and fewer vias, the largest capacitance value can be obtained within a minimum area. The capacitor structure provided can also be applied to a high-frequency high-speed module or system to enhance noise inhibition capability of a capacitive substrate.