Abstract:
Method for manufacturing a multilayer microwave board in one operation. Individually etched layers of a laminate, such as duroid, are bonded to form a package and drilled after which the resulting holes are plated. Next, the superfluous connections are removed by drilling during which process each stripline-coax transition buried in the package is tuned by a correct selection of the drill diameter and the hole depth.
Abstract:
Method and apparatus for fabricating fine pitch pattern multilayer printed circuit boards involving laminar stackable board layers providing power distribution, signal distribution and capacitive decoupling. In one respect, the invention relates to the fabrication of board layers by beginning with a metallic core, patterning the core, selectively enclosing the core in a dielectric, selectively depositing metal to form vias, plugs and signal lines, and forming dendrites with joining metallurgy on the vias and plugs to provide stackable connection from above or below the plane of the board layer. In another aspect, the invention is directed to the use of a sol-gel process to form a thin high dielectric constant crystalline film onto a metallic sheet followed with a deposition of a metallic layer onto the high dielectric constant film. The film serves as the dielectric of a capacitor layer which is thereafter in succession patterned, covered by a dielectric, and has selectively deposited a metallic layer for interconnecting the capacitor and forming vias. The ends of the vias are thereafter subject to dendritic growth and joining metallurgy to provide stackable interconnection capability. A multilayer composite laminar stackable circuit board structure is created using, as appropriate, layers having metallic cores and layers having capacitively configured cores. The multilayer laminar stackable circuit board provides direct vertical connection between surface mounted electronic components and the power, signal and capacitive decoupling layers of the composite board through the dendrites and joining metallurgy of the via and plug formations.
Abstract:
A printed circuit board for use in an electronic device package such as a ball grid array package or organic chip carrier package includes a glass-free dielectric for separating and insulating power cores, circuitry or plated through holes from each other to prevent shorts caused by a migration of conductive material along glass-based prepreg substrates.
Abstract:
This invention describes a new process for the selective isolation of through holes in the production of a multi-layer printed circuit card which allows for substantially smaller holes through reference layers to be built, leading to substantially better electrical isolation of signal traces on adjacent wiring layers, and for substantially improved current carrying capacity in the reference layers. This invention also describes a process to allow reference layers of different thickness from adjacent signal layers, even if they are part of the same `core`. Several different process flows are disclosed, leading to substantially the same structure but with varying degrees of complexity and quality of the finished product.
Abstract:
A method and system for manufacturing electrically isolated vias in a flexible substrate composed of a metal core laminated by layers of an organic material. The method includes the steps of etching via holes, hydrolyzing the inner organic surfaces of the via holes and baking a polyimide solution coated in the via holes.
Abstract:
A multilayer, flexible substrate upon which integrated circuit chips can be attached is disclosed. The input/output(I/O) connections from the chip do not radiate outward from the side of the die, but rather extend from a bottom surface. Since the I/O signal lines would not be accessible for testing once the IC chip is mounted on a substrate, each I/O line is extended outward from the IC footprint to an area on the substrate which is accessible. Additionally, an electrical path from each I/O signal port is simultaneously passed through the substrate layers upon which the chip is mounted, thus providing electrical contact of all I/O ports to the underside of the flexible substrate.An integrated circuit chip is mounted on this flexible substrate. Since each I/O line is accessible after mounting, the IC chip can be tested prior to mounting on its ultimate carrier. Once tested, the IC chip and the substrate upon which it is mounted are excised from the roll of substrate material. This excised, pretested memory package, which includes both the IC chip and the flexible substrate, can then be mounted directly onto the ultimate carrier either by reflow soldering or direct bonding.
Abstract:
A circuit board comprises a substrate with opposite first and second sides. A pair of plated through holes (PTHs) extends along z-axis. A pair of signal traces are made on the first side of the substrate and electrically coupled to the pair of the PTHs respectively to form a differential pair. A ground metal is made on the second side of the substrate, the ground metal has a clearance made therein. The ground metal extends fully overlapping with the full signal traces to eliminate reflection noise caused by a boundary between the clearance and the metal ground.
Abstract:
A computer system receives an initial multilayered ceramic package design. The computer system maintains a first selection of mesh line segments of the mesh line segments at a first width and adjusts a second selection of mesh line segments of the plurality of mesh line segments to a second width. The computer system controls fabrication of the multilayered ceramic package based on the modified multilayered ceramic package design.
Abstract:
A computer system receives an initial multilayered ceramic package design. The computer system maintains a first selection of mesh line segments of the mesh line segments at a first width and adjusts a second selection of mesh line segments of the plurality of mesh line segments to a second width. The computer system controls fabrication of the multilayered ceramic package based on the modified multilayered ceramic package design.
Abstract:
A circuitized substrate which includes a conductive paste for providing electrical connections. The paste, in one embodiment, includes a metallic component including nano-particles and may include additional elements such as solder or other metal micro-particles, as well as a conducting polymer and organic. The particles of the paste composition sinter and, depending on what additional elements are added, melt as a result of lamination to thereby form effective contiguous circuit paths through the paste. A method of making such a substrate is also provided, as is an electrical assembly utilizing the substrate and including an electronic component such as a semiconductor chip coupled thereto.