Abstract:
A memory module may include a module substrate having a side portion. The side portion may be adapted or configured to be inserted into a socket of a main board. A plurality of connection pads may be arranged along the side portion. The connection pads may have a step portion of a first height from a surface of the side portion and a contact portion of a second height that is greater than the first height from the surface of the side portion. At least one semiconductor package may be mounted on the module substrate and electrically connected to the connection pads.
Abstract:
The invention provides a printed circuit board and a method for fabricating the same. The printed circuit board includes a core substrate having a first surface and an opposite second surface. A first through hole and a second through hole are formed through a portion of the core substrate, respectively from the first surface and second surfaces, wherein the first and second through holes are laminated vertically and connect to each other. A first guide rail and a second guide rail are, respectively, formed through a portion of the core substrate and connected to the second through hole, so that a fluid flows sequentially from an outside of the printed circuit board through the first guide rail, the second through hole and the second guide rail, to the outside of the printed circuit board.
Abstract:
The invention provides a printed circuit board capable of mounting BGA or other IC package of narrow terminal interval by using through-holes of conventional size. On one principal surface of printed circuit board (1), soldering lands (2a), (2b), (2c), and (2d) for connecting solder balls are disposed in lattice. Central point (B) of through-hole (3) is set eccentric to the side of soldering land (2a) at the same potential as through-hole (3), remote from intersection (A) formed by diagonal line (200ab) linking soldering lands (2a) and (2b) and diagonal line (200cd) linking soldering lands (2c) and (2d).
Abstract:
An electronic device has a housing and circuitry disposed within the housing. The circuitry is mounted to, for example, a top surface of a Printed Wiring Board (PWB) disposed within the housing. The PWB has a dual-height cavity that is formed as a recess in the top surface. The dual-height cavity is sized to receive one or more electronic components. Electrical contacts disposed within the dual-height cavity electrically connect the electronic component to electronic circuits mounted to the top surface of the PWB.
Abstract:
The present invention discloses a micro sensing apparatus comprising a sensing device, a cylindrical plastic body and a plurality of circuits. The sensing device has a bottom surface. The cylindrical plastic body is axially coupled to the sensing device and includes a connecting portion and a carrying portion, and the connecting portion has a first end surface coupled to the bottom surface, and the carrying portion is integrally formed and coupled to the connecting portion, and the carrying portion includes a plurality of electronic devices installed thereon and a plurality of circuits formed on the carrying portion. With the integrally formed connecting portion and carrying portion, the problem of requiring an adapting mechanism of a conventional sensing device to couple a printed circuit board can be solved. The cylindrical plastic body is axially coupled to the sensing device to reduce the overall external diameter of the micro sensing apparatus.
Abstract:
Multi-part substrate arrangements that yield low profile configurations are disclosed. One aspect pertains to portable electronic devices are able to have low profiles through use of multi-part substrate arrangements. Another aspect pertains to methods for assembling two or more separate substrates into a multi-part substrate. By use of multi-part substrate arrangements according to the invention, portable electronic devices are able to be thinner and more compact.
Abstract:
A printed circuit board includes an insulating layer, a copper layer formed on the insulating layer and a reinforcing layer formed on the copper layer at opposite sides of the given portion. The copper layer includes a plurality of electrical traces at a given portion thereof. A thickness of the reinforcing layer increases in a direction away from the given portion. A method for manufacturing the printed circuit board is also provided in this disclosure.
Abstract:
A flexible printed circuit (FPC) board includes a flexible substrate, an electric terminal portion, and a reinforcing structure. The electric terminal portion is disposed on a bottom surface of the flexible substrate and is suitable to be inserted into an electrical connector to electrically connect therewith. The reinforcing structure is disposed on a top surface of the flexible substrate and located just above the electric terminal portion. The reinforcing portion includes a stiffener plate bonded to the top surface of the flexible substrate and a pad bonded to a top surface of the stiffener plate. The pad is shorter than the stiffener plate.
Abstract:
A method of manufacturing a microelectronic device including imprinting a layer on a substrate with an imprinted pattern, the imprinted pattern defining a first anchor impression within the layer that includes a first base region positioned adjacent the layer and a first distal region positioned opposite the first base region, the first distal region defining a cross sectional area greater than a cross sectional area of the first base region, and the imprinted pattern defining a second anchor impression within the layer that includes a second base region positioned adjacent the layer and a second distal region positioned opposite the second base region, the second distal region defining a cross sectional area greater than a cross sectional area of the second base region and greater than a cross sectional area of the first distal region.
Abstract:
Substrate for electrical devices is disclosed. An embodiment for the substrate comprised of an insulator and a conductive element(s), wherein the conductive element embedded in the insulator, said conductive element also enables to be comprised of an upper portion(s) and a lower portion(s) which are unitary and stack; wherein the surfaces of said conductive element contacted with said insulator enables to be increased, then said conductive layer can be held by said insulator more securely, in this manner, it enables to be prevented said conductive element from peeling off said insulator, and then the reliability of said substrate in accordance with the present invention enables to be enhanced; meanwhile, said substrate can further include a chip which is embedded therein, in order that said substrate being capable of affording a thinner electrical device thickness and enhanced reliability.