Abstract:
A gold bump contact on an electronic component is solder bonded to a bond pad of a printed circuit board or the like utilizing a solder composed of tin-bismuth alloy. The solder is applied to the bond pad as an electroplate or a paste, after which the gold bump is superposed onto the bond pad. The assembly is heated to a first temperature to melt the solder and thereafter maintained at a temperature less than 150.degree. C. to permit the molten solder to wet the gold surface, after which the assembly is cooled to solidify the solder and complete the connection. Wetting at the relatively low temperature retards dissolution of the gold and thereby reduces formation of unwanted gold tin intermetallic compounds that tend to decrease mechanical properties of the connection.
Abstract:
The improved liquid-crystal display device has a slit formed in part of the TAB area where the electrodes on the liquid-crystal display panel are connected to the output terminals on the TAB and the liquid-crystal display panel is bonded to the TAB by means of a first anisotropic conductive adhesive having a comparatively weak adhesive force, such as a thermoplastic anisotropic conductive adhesive, whereas a second anisotropic conductive adhesive having a comparatively strong adhesive force, such as a uv curable adhesive, is coated in the slit. This liquid-crystal display device can be produced by a process that proceeds basically as follows: the electrodes on the liquid-crystal display panel are connected to the output terminals on the TAB by means of a thermoplastic adhesive as the first anisotropic conductive adhesive having a comparatively weak adhesive force; then, the assembly is subjected to an operating test; if the TAB is found to be defective in the operating test, it is replaced and, if no defect is found, a uv curable or a thermosetting adhesive as the second anisotropic conductive adhesive having a comparatively strong adhesive force is coated in the slit and then cured as the output terminals are compressed against the electrodes.
Abstract:
This disclosure relates to laser bonding electrical components having conductive elements which are naturally reflective of the laser beam wavelength. Component leads or pads which are made of copper or have a gold coating, for example, will reflect the wavelength of an Nd:YAG laser, making it difficult to form physical and electrical bonds using the laser bonding technique. In preferred embodiments, the conductive elements are coated with a non-flux, non-metallic, coating material which is less reflective of the laser energy than the conductive elements, making it possible to efficiently use a laser to accomplish bonding.
Abstract:
An outer bonding tool is used for bonding outer leads of a tape carrier on corresponding pads which are formed on a circuit substrate by solder after bonding inner leads of the tape carrier and electrodes of a generally rectangular semiconductor chip. The outer bonding tool includes a main body having a bottom surface, a pressing surface provided at the bottom surface of the main body for pressing against the outer leads of the tape carrier, where the pressing surface has a generally rectangular frame shape, and a groove formed in the pressing surface and extending generally perpendicularly to a corresponding group of outer leads extending from one side of the semiconductor chip. A width of the groove taken in a direction in which the corresponding group of outer leads extend is smaller than a length of the outer leads.
Abstract:
Method and apparatus are disclosed for mounting a flexible film semiconductor chip carrier on a second level electronic package. The resulting electronic packaging structure includes electrically conductive spacers, such as solder balls or solder coated copper balls, which electrically interconnect outer lead bonding pads on the flexible film semiconductor chip carrier and corresponding bonding pads on the second level electronic package, and which physically support the flexible film of the semiconductor chip carrier substantially in a plane above the surface of the second level electronic package. This electronic packaging structure is made using a special assembly fixture comprising a base plate, a pressure insert with a resilient member, and a top plate. The flexible film semiconductor chip carrier with the spacers attached thereto is placed over the resilient member of the pressure insert which is clamped together with the second level electronic package between the top and base plates. Then, this assembly is heated to reflow the solder of the spacers, and the assembly fixture is disassembled, leaving the flexible film semiconductor chip carrier mounted on the second level electronic package with the flexible film of the carrier having a planar geometry as desired. The spacers may be attached to the flexible film semiconductor chip carrier using a special template having a pattern of openings corresponding to the pattern of outer lead bonding pads on the flexible film semiconductor chip carrier.
Abstract:
An IC module includes a film substrate, a plurality of wiring leads, an electrically insulative plastic, and an IC chip. A junction structure of the IC module comprises the IC module, an electronic component, and an electrically conductive bonding compound to couple the IC module to the electronic component. The film substrate is provided with an opening. The plurality of wiring leads are arranged on the film substrate in a manner that some respective portions of the wiring leads bridge the opening provided in the film substrate, the electrically insulative plastic coats the some respective portions of the wiring leads which bridge the opening, and the IC chip is coupled to the wiring leads. The IC module is folded at a part where the some respective portions of the wiring leads bridge the opening.
Abstract:
A TAB package for packaging a semiconductor chip includes a flexible base plate having a first surface and a second surface opposite to the first surface, an input and output leads being formed on the second surface of the flexible base plate and capable of being connected to the semiconductor chip, and a plurality of slits being formed on the first surface of the flexible base plate. Accordingly, the TAB package is allowed to be easily bent and kept in the bending state. The slits are formed in a manner to correspond to the intervals between the adjacent input and output leads so that the input and output leads can be reliably supported by the flexible base plate.
Abstract:
Assemblies of aligned tape automated bonding frames on a substrate, and a method of aligning a tape automated bonding frame to connection sites on the substrate. The method includes photolithographically patterning and etching metal to form a first pattern of signal leads and a second pattern of alignment leads. A semiconductor chip is bonded to the inner lead ends of the first pattern. Metal on a substrate is photolithographically patterned and etched to provide a third pattern of substrate connection sites and a fourth pattern of registration pads. The fourth pattern of registration pads has geometric and dimensional features which precisely correspond to those of the alignment leads. Moreover, the spatial relationship of the third and fourth patterns correspond to the spatial relationship of the first and second patterns. The corresponding geometric and dimensional features of the second and fourth patterns are aligned, whereafter the registration pads and the alignment leads are soldered together. The attachment of the second and fourth patterns provide fixed registration of the first and third patterns. Preferably, the substrate includes redundant registration pads to facilitate replacement of a defective semiconductor chip.
Abstract:
A method of forming electrical connections between a flexible film carrier and an electronic device (e.g., semiconductor chip). The method comprises the steps of aligning the film carrier relative to the device having a plurality of solder mounds located on an upper surface thereof. The film carrier is engaged such that bridging portions of conductive leads thereof physically contact these solder mounds. Hot gas is passed through a screen member to heat the bridging portions of the leads to cause these leads to in turn heat the solder mounds to cause the mounds to become molten, whereafter these leads and mounds are cooled to form the desired solder bonds. The resulting structure may form part of an electronic package, this package also described herein.
Abstract:
A method of mounting an integrated circuit carrier (10) having a plurality of straight leads (12) retained by an integral frame (16) is provided. The plurality of straight leads (12) of the carrier (10) is bent to form a plurality of bent leads (12) still retained by the frame (16). The plurality of bent leads are then scored to form a notch (32) on each bent lead. Solder fluxing, placing, and reflowing the plurality of bent leads of the integrated circuit carrier against corresponding printed lines of the printed circuit (26) surface before each notch follow. Finally, a remainder portion of the plurality of leads from and including the frame (16) to the notch (32) on each lead (12) is removed.