Abstract:
A compound represented by a general formula (1) ABXn (where A is a carbon-containing group; B is at least one element selected from Si, Ge, Sn, Ti and Zr; X is a hydrolyzable group; and n is 1, 2 or 3), for example, a chlorosilane compound having a fluorocarbon group, is measured in an amount required for one time application, and dropped from a nozzle on a surface of a substrate having an active hydrogen on the surface, and simultaneously it is rubbed with a coater made of a sponge or a nonwoven fabric, etc. Furthermore, it is rubbed with a coater made of a sponge or a nonwoven fabric, etc. while blowing a dry warm air, and an elimination reaction is caused between the active hydrogen on the surface of the substrate and the hydrolyzable group of the compound. Thus, the compound is covalently bonded to the substrate. The molecules of the is silane compound also are polymerized with one another to be fixed. Thus can be provided a coating film and a method and an apparatus for producing the same, in which: an amount of a liquid required for forming a film is decreased even when the substrate has an irregular shape and a large size; it is not necessary to be concerned for the pot life of a coating solution; the substrate is manipulated easily; and cost is low.
Abstract:
In a coating film formation method in which the thermosetting water-borne color paint (A) is coated on the surface of the substrate, then a thermosetting water-borne paint containing color pigment and/or glittering pigment (B) is coated on said coated surface, and, after predrying as necessary, a thermosetting clear paint (C) is coated and after that said 3-layer coating films of (A), (B) and (C) are simultaneously cured by heating, the solid content of the wet coat is controlled by an air jet step in which the air, whose temperature and/or humidity are controlled, is jetted from behind the paint nozzle in approximately the same direction as the atomized particles of said thermosetting water color paint (A) move to the surface of the substrate, when said paint is coated, around the spray pattern so that the air touches said pattern.
Abstract:
In a coating film formation method in which the thermosetting water-borne color paint (A) is coated on the surface of the substrate, then a thermosetting water-borne paint containing color pigment and/or glittering pigment (B) is coated on said coated surface, and, after predrying as necessary, a thermosetting clear paint (C) is coated and after that said 3-layer coating films of (A), (B) and (C) are simultaneously cured by heating, the solid content of the wet coat is controlled by an air jet step in which the air, whose temperature and/or humidity are controlled, is jetted from behind the paint nozzle in approximately the same direction as the atomized particles of said thermosetting water color paint (A) move to the surface of the substrate, when said paint is coated, around the spray pattern so that the air touches said pattern.
Abstract:
In a method for fabricating a thin film of polymer, particularly a semiconducting thin film of polymer with an improved structural order, wherein the thin film is formed by deposition of a polymer material onto a solid substrate material from a polymer solution formed by means of a solvent, the polymer solution is provided in a closed container such that a free volume is left in the container above the polymer solution and the substrate material immersed in the solution, whereupon the substrate material with a thin film deposited thereon is withdrawn from the polymer solution with a withdrawal speed being selected dependent on the concentration of the polymer solution, until the substrate material is located in the free volume a certain distance above the polymer solution. The substrate material is kept in vertical position in the free volume while the solvent evaporates, whereupon the substrate material with the thin film is removed from the container for further drying in a vacuum oven.—Use in fabrication of organic thin-film transistors.
Abstract:
A recording medium based on the organic dye having excellent storage reliability is to be produced. In producing an optical recording medium having on a substrate a recording layer containing an organic dyestuff and a metal layer, the metal layer is first formed, and the atmosphere of a transport path used for transferring the resulting product to the next stage is set to the relative humidity of 40% or less. The metal layer may e.g., be a reflective layer. In controlling the relative humidity, a shielding plate is provided around the transport path and the relative humidity of an area encircled by this shielding plate is controlled by an air conditioner.
Abstract:
A closed space is formed in a reduced pressure drying station, and the closed space is brought to a vacuum state. In this state, an EB unit irradiates a wafer mounted on a hot plate with an electron beam to foam an insulating film material. Subsequently, the hot plate is raised to a predetermined temperature, and drying processing is performed under a reduced pressure. As described above, since the foaming processing is performed in the reduced pressure drying station, bubbles remain in the insulating film, so that the existence of the bubbles can decrease the relative dielectric constant.
Abstract:
The invention is directed to a method and apparatus for coating substrates by a liquid spray so as to avoid entrapment of gaseous bubbles, particularly air bubbles, in the coating and desirably to thereby obtain bubble-free coatings. More particularly, the invention involves spray applying the coating to a substrate in an atmosphere consisting of gases having appreciable solubility in the applied coating, such as carbon dioxide, such that gas bubbles that may become entrapped in the coating are removed after application by the gases dissolving into the coating and diffusing to the surface.
Abstract:
A method and apparatus for preventing vortical air flow behind a free-falling curtain in a curtain coating apparatus. There is a critical region within the coating apparatus defined in part by a coating hopper, the free-falling curtain delivered from the coating hopper, a portion of the moving substrate supported on a roller to which the free-falling curtain is delivered, and an air shield located between the roller and the coating hopper. A first intake slot proximate to the moving substrate shield is used to remove boundary-layer air entrained on the moving substrate. A second intake slot positioned within the critical region is used to remove boundary-layer air entrained on the free-falling curtain. Each of the two intake slots is connected to vacuum source. One or two vacuum sources may be used.
Abstract:
The detrimental effects of fluctuating humidity are neutralized by adjusting the viscosity of a waterborne coating as it is being conducted to the spraying device. A predetermined amount of water or other viscosity modifying additive is mixed continuously with the coating in the coating supply line immediately upstream from the spray device. The amount of water or other additive to be added may be determined by monitoring the humidity in the spray zone. Preferably, an automated feedback control system is employed to adjust the amount of water or other viscosity altering additive being mixed into the coating stream.
Abstract:
The method and apparatus operate to complete the following stages. At the first stage the coating is held at room temperature in the time interval from 20 s to 1 hour, depending on the type of polymer coating. At the second stage the coating is held at an elevated temperature under excessive pressure, sufficient for suppressing propagation of microcracks in such time interval so that at reaching the predetermined protective properties the thermodestruction of the polymer coating does not occur. At the third stage performed is the cooling of the coating to room temperature. According to the invention, the excessive pressure is built up at the first stage and maintained at the cooling stage. The invention may find application in manufacture of integrated circuits, as well as for the formation of thin polymer insulation coatings.