Abstract:
An optical fiber package is described comprising a light transmitting core having a core diameter, a coating layer surrounding the core, and wherein the amount of chlorine in the light transmitting core region is homogeneous and comprises at least 3000 ppm. The fiber package is such that the optical fiber core exhibits a reduction in the hydrogen induced attenuation losses. A method for fabricating the optical fiber package is also disclosed.
Abstract:
Bromine doping of silica glass is demonstrated. Bromine doping can be achieved with SiBr4 as a precursor. Bromine doping can occur during heating, consolidation or sintering of a porous silica glass body. Doping concentrations of bromine increase with increasing pressure of the doping precursor and can be modeled with a power law equation in which doping concentration is proportional to the square root of the pressure of the doping precursor. Bromine is an updopant in silica and the relative refractive index of silica increases approximately linearly with doping concentration. Bromine can be used as a dopant for optical fibers and can be incorporated in the core and/or cladding regions. Core doping concentrations of bromine are sufficient to permit use of undoped silica as an inner cladding material in fibers having a trench in the refractive index profile. Co-doping of silica glass with bromine and chlorine is also demonstrated.
Abstract:
An optical fiber having a core comprising silica and greater than 1.5 wt % chlorine and less than 0.5 wt % F, said core having a refractive index Δ1MAX, and a inner cladding region having refractive index Δ2MIN surrounding the core, where Δ1MAX>Δ2MIN.
Abstract:
An optical fiber with large effective area, low bending loss and low attenuation. The optical fiber includes a core, an inner cladding region, and an outer cladding region. The core region includes a spatially uniform updopant to minimize low Rayleigh scattering and a relative refractive index and radius configured to provide large effective area. The inner cladding region features a large trench volume to minimize bending loss. The core may be doped with Cl and the inner cladding region may be doped with F.
Abstract:
An optical fiber with large effective area, low bending loss and low attenuation. The optical fiber includes a core, an inner cladding region, and an outer cladding region. The core region includes a spatially uniform updopant to minimize low Rayleigh scattering and a relative refractive index and radius configured to provide large effective area. The inner cladding region features a large trench volume to minimize bending loss. The core may be doped with Cl and the inner cladding region may be doped with F.
Abstract:
A high silica glass composition comprising about 92 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 8 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.
Abstract translation:高二氧化硅玻璃组合物包含约92-约99.9999wt。 %SiO 2和约0.0001-约8wt。 选自Al 2 O 3,CeO 2,TiO 2,La 2 O 3,Y 2 O 3,Nd 2 O 3,其它稀土氧化物中的至少一种掺杂剂的%,以及其两种或更多种的混合物。 玻璃组合物的工作点温度范围为600至2000℃。这些组合物表现出与纯熔融石英相似的稳定性,但具有适度的工作温度以使药物包装成本有效地制造。 该玻璃特别可用作药物应用的包装材料,例如预填充注射器,安瓿和小瓶。
Abstract:
An optical component made of synthetic quartz glass includes a glass structure substantially free of oxygen defect sites and having a hydrogen content of 0.1×1016 to 1.0×1018 molecules/cm3, an SiH group content of less than 2×1017 molecules/cm3, a hydroxyl group content of 0.1 to 100 wt. ppm, and an Active temperature of less than 1070° C. The optical component undergoes a laser-induced change in the refractive index in response to irradiation by a radiation with a wavelength of 193 nm using 5×109 pulses with a pulse width of 125 ns and a respective energy density of 500 μJ/cm2 at a pulse repetition frequency of 2000 Hz. The change totals a first measured value M193nm when measured using the applied wavelength of 193 nm and a second measured value M633nm when measured using a measured wavelength of 633 nm. The ratio M193nm/M633nm is less than 1.7.
Abstract:
A high silica glass composition comprising about 92 to about 99.9999 wt. % SiO2 and from about 0.0001 to about 8 wt. % of at least one dopant selected from Al2O3, CeO2, TiO2, La2O3, Y2O3, Nd2O3, other rare earth oxides, and mixtures of two or more thereof. The glass composition has a working point temperature ranging from 600 to 2,000° C. These compositions exhibit stability similar to pure fused quartz, but have a moderate working temperature to enable cost effective fabrication of pharmaceutical packages. The glass is particularly useful as a packaging material for pharmaceutical applications, such as, for example pre-filled syringes, ampoules and vials.
Abstract translation:高二氧化硅玻璃组合物包含约92-约99.9999wt。 %SiO 2和约0.0001-约8wt。 选自Al 2 O 3,CeO 2,TiO 2,La 2 O 3,Y 2 O 3,Nd 2 O 3,其它稀土氧化物中的至少一种掺杂剂的%,以及其两种或更多种的混合物。 玻璃组合物的工作点温度范围为600至2000℃。这些组合物表现出与纯熔融石英相似的稳定性,但具有适度的工作温度以使药物包装成本有效地制造。 该玻璃特别可用作药物应用的包装材料,例如预填充注射器,安瓿和小瓶。
Abstract:
The present invention relates to a multi-mode optical fiber having a structure enabling stable production and broadening of communication bandwidth as compared with the conventional structures. The multi-mode optical fiber has a core with a diameter 2a that is doped with GeO2 and chlorine. The chlorine concentration profile in the core along the diametric direction of the multi-mode optical fiber has a shape such that the chlorine concentration at a second measurement position within a range at a distance of from 0.9 a to 1.0 a from the center of the core in the radial direction thereof is higher than the chlorine concentration at a first measurement position at a distance of a/2 from the center of the core in the radial direction thereof.
Abstract:
An optical member comprising OD-doped silica glass, optionally doped with fluorine. The optical member is particularly advantageous for use in connection with radiation having a wavelength shorter than about 248 nm. In certain embodiments the optical member can be advantageously used for wavelength as short as about 157 nm.