Abstract:
A hydrodeoxygenation catalyst comprises a metal catalyst, an acid promoter, and a support. The metal catalyst is selected from platinum, palladium, ruthenium, rhenium rhodium, osmium, iridium, nickel, cobalt, molybdenum, copper, tin, or mixtures thereof. The support is a promoted-zirconium material including texture promoters and acid promoters. The hydrodeoxygenation catalyst may be used for hydrodeoxygenation (HDO) of sugar or sugar alcohol in an aqueous solution. In one embodiment the HDO catalyst may be used for HDO of fatty acids such as fatty acid methyl esters (FAME), triglycerols (in plant oil and animal fat), pyrolysis oil, or lignin. The hydrodeoxygenation catalyst for fatty acid process does not require the use of an acid promoter, it is optional.
Abstract:
A fuel composition having a boiling range of between 95 to 440 degrees Fahrenheit wherein the fuel composition has (a) a total sum of n-paraffins and naphthenes content of at least 7 volume percent.
Abstract:
Acyclic monterpene alcohols, like linalool, to be converted through a series of highly efficient catalytic reactions a biogasoline blending component, and a drop-in biodiesel fuel.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
At least one biosurfactant may be added to a hydrocarbon-based fluid to decrease the viscosity of the hydrocarbon-based fluid. The biosurfactant(s) may be less toxic to the environment than other diluents typically used to decrease the viscosity of such fluids. The biosurfactant(s) may be or include, but are not limited to mycolic acids, glycolipids, lipopolysaccharides, lipoproteins-lipopeptides, phospholipids, and combinations thereof.
Abstract:
A method, apparatus, and system for a solar-driven chemical plant are disclosed. Some embodiments may include a solar thermal receiver to absorb concentrated solar energy from an array of heliostats and a solar-driven chemical reactor. This chemical reactor may have multiple reactor tubes, in which particles of biomass may be gasified in the presence of a carrier gas in a gasification reaction to produce hydrogen and carbon monoxide products. High heat transfer rates of the walls and tubes may allow the particles of biomass to achieve a high enough temperature necessary for substantial tar destruction and complete gasification of greater than 90 percent of the biomass particles into reaction products including hydrogen and carbon monoxide gas in a very short residence time between a range of 0.01 and 5 seconds.
Abstract:
A process for converting a solid biomass material is provided. The solid biomass material is contacted with a catalytic cracking catalyst at a temperature of more than 400° C. in a riser reactor to produce one or more cracked products. The riser reactor is an external riser reactor with a curve and/or low velocity zone at its termination and wherein a part of the catalytic cracking catalyst has deposited in the curve and/or low velocity zone.
Abstract:
Methods of separating and purifying products from the catalytic fast pyrolysis of biomass are described. In a preferred method, a portion of the products from a pyrolysis reactor are recovered and purified using a hydrotreating step that reduces the content of sulfur, nitrogen, and oxygen components, and hydrogenates olefins to produce aromatic products that meet commercial quality specifications.
Abstract:
Methods and systems for producing jet-range hydrocarbons are disclosed herein. In an exemplary embodiment, a method for producing jet-range hydrocarbons includes the steps of combining a first stream including C4 olefinic hydrocarbons and a second stream including C5-C8 olefinic hydrocarbons to produce a third stream including C4-C8 hydrocarbons, oligomerizing the third stream including C4-C8 olefinic hydrocarbons to produce a fourth stream including C4-C20 olefinic hydrocarbons, and separating C5-C8 hydrocarbons from the fourth stream including C4-C20 olefinic hydrocarbons to produce the second stream including C5-C8 olefinic hydrocarbons and a fifth stream including C9-C20 olefinic hydrocarbons. The method further includes the step of hydrogenating the fifth stream including C9-C20 olefinic hydrocarbons to produce a sixth stream including C9-C20 paraffinic jet-range hydrocarbons.
Abstract:
An enhanced natural gas processing method using Fischer-Tropsch (FT) process for the synthesis of sulfur free, clean burning, hydrocarbon fuels, examples of which include syndiesel and aviation fuel. A selection of natural gas, separately or combined with portions of natural gas liquids and FT naphtha and FT vapors are destroyed in a syngas generator and used or recycled as feedstock to an Fischer-Tropsch (FT) reactor in order to enhance the production of syndiesel from the reactor. The process enhancement results is the maximum production of formulated syndiesel without the presence or formation of low value by-products.