Abstract:
A method for optimizing initial discriminating information extracted from a two-dimensional image of the patient dental arches, referred to as “acquired image”, by a three-dimensional digital reference model of at least one portion of a patient arch, the method including the steps: C1. assessing quality of the initial discriminating information and quality threshold, filtering to keep only the initial discriminating information that has quality higher than the quality threshold, and defining “the discriminating information to be tested” as the initial discriminating information selected; C2. testing consistency between the discriminating information to be tested and reference model; C3. assessing test result and, in accordance with the assessment: adding discriminating information that was not kept to the discriminating information to be tested and/or deleting discriminating information from the discriminating information to be tested, and then returning to step C2. or; defining the optimal discriminating information as the discriminating information to be tested.
Abstract:
An acquisition kit, including: a mouthpiece intended for being placed into the mouth of a patient and including a reference mark; and an image-acquisition apparatus including a screen for viewing an image that can be acquired, computer memory containing information on target acquisition conditions, and a computer program comprising program code instructions for displaying on said screen a reference in a position such that, when the reference mark matches the reference on the screen, the acquisition apparatus complies with the target acquisition conditions.
Abstract:
Systems for measuring optical properties of a specimen are disclosed. The systems are configured to sample signals related to the measurement of the properties of a specimen, and perform software-based coherent detection of the signals to generate resulting measurements are based on the signals acquired at substantially the same time instance. This facilitates the displaying or generating of the desired measurements in real time. In one configuration, the system is configured to direct a modulated light signal at a selected wavelength incident upon a specimen. In another configuration, the system is configured to direct a combined light signal, derived from a plurality of light signals at different wavelengths and modulated with different frequencies, incident upon a specimen. In yet another configuration, the system is configured to direct a plurality of light signals modulated with different frequencies incident upon different regions of a specimen.
Abstract:
Optical analysis systems and methods may be used for analyzing the characteristics, including compositions, of cement additives, which may be used in formulating a cement slurry. For example, a cement additive may be optically interacting with an integrated computational element (“ICE”) configured to detect a characteristic of the cement additive. An output signal may then be generated corresponding to the characteristic of the cement additive detected by the ICE, which may be received and processed with a signal processor to yield a value for the characteristic of the cement additive. The value of the characteristic of the cement additive may then be used to determine an amount of the cement additive for use in producing a cement slurry.
Abstract:
A device for generating temporally distant light pulses is provided, the device including at least a first light source for generating a first sequence of light pulses at a first repetition rate, and a second light source for generating a second sequence of light pulses at a second repetition rate. In some embodiments the device includes at least one actuator element which influences the first and/or the second repetition rate, and a control element which charges the actuator element with a periodical modulation signal for periodical variation of the first and/or second repetition rate. A control circuit is also provided including at least a phase detector, a corrective element, a control element, and a superposition element that forms an actuator signal from a modulation signal and an output signal of the control element, and which charges the actuator element with the actuator signal.
Abstract:
A multi-functional portable device that connects to and communicates with one or more modular units designed to provide different functionality. The multi-functional portable device of the present invention may communicate with a user computing device. The multi-functional portable device may be employed in various methods and systems used for interacting with and acquiring information from the surrounding environment.
Abstract:
A system and method of sorting mineral streams, for example laterite mineral ores, into appropriately classified valuable and waste streams for maximum recovery of value from the mineral stream, e.g., a stream of minerals includes receiving response data indicating reflected, absorbed or backscattered energy from a mineral sample exposed to a sensor, where the mineral sample is irradiated with electromagnetic energy. The system determines spectral characteristics of the mineral sample by performing spectral analysis on the response data of the mineral sample and identifies a composition of the mineral sample by comparing the spectral characteristics of the mineral sample to previously developed spectral characteristics of samples of known composition. The system then generates a sort decision for the mineral sample based on the comparison, where the sort decision is used in diverting the mineral sample to a desired destination e.g. pyrometallurgical treatment stages, or to a waste stream.
Abstract:
Optical computing devices including a light source that emits electromagnetic radiation into an optical train extending from the light source to a detector, a substance arranged in the optical train and configured to optically interact with the electromagnetic radiation and produce sample interacted radiation, a processor array arranged in the optical train and including a plurality of ICE arranged on a substrate and configured to optically interact with the electromagnetic radiation. The detector receives modified electromagnetic radiation generated through optical interaction of the electromagnetic radiation with the substance and the processor array. A weighting device is coupled to one or more of the ICE to optically apply a weighting factor to the modified electromagnetic radiation prior to being received by the detector, wherein the detector generates an output signal indicative of a characteristic of the substance based on beams of modified electromagnetic radiation.
Abstract:
A method for manufacturing an emitter comprises providing a semiconductor substrate having a main surface, the semiconductor substrate comprising a cavity adjacent to the main surface. A portion of the semiconductor substrate arranged between the cavity and the main surface of the semiconductor substrate forms a support structure. The method comprises arranging an emitting element at the support structure, the emitting element being configured to emit a thermal radiation of the emitter, wherein the cavity provides a reduction of a thermal coupling between the emitting element and the semiconductor substrate.
Abstract:
An optical analysis tool includes an integrated computational element (ICE). The ICE includes a plurality of layers stacked along a first axis. Constitutive materials of the layers are electrically conductive and patterned with corresponding patterns. An arrangement of the patterns with respect to each other is related to a characteristic of a sample.