Abstract:
A method of analyzing an optical image of a scene to determine the spectral intensity of each pixel of the scene, which includes collecting incident light from the scene; (b) passing the light through an interferometer which outputs modulated light corresponding to a predetermined set of linear combinations of the spectral intensity of the light emitted from each pixel; focusing the light outputted from the interferometer on a detector array; and processing the output of the detector array to determine the spectral intensity of each pixel thereof. If the interferometer is of the moving type scanning in one dimension is required where the detector array is one dimensional, and no scanning when the detector array is two-dimensional. If the interferometer is of the non-moving type scanning is required in one dimension when the detector array is two-dimensional, and in two dimensions when the detector array is one-dimensional.
Abstract:
Light filter apparatus for receiving a light beam having wavelengths in a selected band and for dispersing the light into a plurality of rays, with each ray having a different wavelength for which the intensity peaks. The peak wavelength varies approximately continuously with displacement of spatial position in a chosen direction along the filter's light-receiving plane. In one embodiment, the filter is a modified etalon structure having at least two reflecting surfaces whose separation distance is not constant but increases or decreases monotonically with distance in a chosen direction in a light-receiving plane of the etalon. Each of these two reflecting surfaces may be planar or non-planar but continuous, or may have a step or staircase configuration. This structure may operate using transmitted light or reflected light. In a second embodiment, an edge filter combination is used to produce a narrow band of transmitted or reflected light having a variable central wavelength that varies with position along the chosen direction. In a third embodiment, a multi-layer thin film structure is used to provide a narrow band of transmitted or reflected light having a variable central wavelength. The filter may be combined with a one-dimensional or two-dimensional array of photosensor elements, which array may be linear, circular or generally curvilinear, one such element receiving a group of adjacent light rays of similar peak wavelength, to provide a plurality of different wavelength readings on an incident light beam for spectrophotometry or colorimetry analysis.
Abstract:
A method is provided in which the pulse stretching effects of radiation trapping can be minimized in atomic resonance filter detectors or QLORD filter detectors of the type described in U.S. Pat. No. 4,292,526. The QLORD detector of this invention which consists of two spectral bandpass filters, one each located on either side of a transparent cell containing an alkali metal vapor (preferably cesium vapor), and responds to an incoming pulse in the visible part of the spectrum of light (actually 420 to 480 nm), emitting a pulse of infrared light. If the transparent cell contains alkali metal vapor only, the infrared light pulse will be stretched, because of resonant trapping within the alkali metal vapor. However, in accordance with the present invention, an inert buffer gas (namely helium) is added to the alkali metal vapor. This buffer gas allows the rapid leakage of infrared light photons from the wings of the energy spectrum, and hence a more rapid response to the incoming pulse. The present invention is particularly useful in overcoming "false alarms" such as bioluminescence signals when pulse stretching and external noise sources are superimposed, and when a rapid pulse repetition rate is useful.
Abstract:
An optical interference filter has narrow linewidth and wide acceptance ae and includes a hemisphere coated to provide a narrow bandpass filter at a desired wavelength at normal incidence while other wavelengths at normal incidence are absorbed or reflected. A photodetector placed at the center of the hemisphere detects the desired wavelength only. Other wavelengths that are shorter than the wavelength of the filter are transmitted through the filter to be absorbed by a black absorbing surface around the photodetector. Thus, only the frequency of interest at normal incidence provides a representative signal at the detector.
Abstract:
A radiometer for detecting and measuring components of luminescence and reflected light contained in a light beam from a target which included means for sensing the temperature of an optical filter in the radiometer and for adjusting the angular position of the mount which carries the filter in response to the sensed temperature to thereby retune the filter to its center frequency when changes in temperature occur. Longitudinal movement of an adjustment rod changes the angular position of the mount. A micrometer means manually moves the rod in one embodiment while a motor moves the rod in a second embodiment. The rod carries a means for sensing the longitudinal position of the rod (hence the rotational position of the mount) and generates a signal representative thereof. A means on the mount senses the temperature of the filter and generates a signal representative thereof. The temperature and position signals are compared by a processing circuitry which outputs an error signal if the position of the mount does not match a predetermined temperature signal. This error signal the (1) directly operates a control mechanism to move the adjustment rod which rotates the mount to a new angular position to retune the center frequency of the filter or (2) is fed to a visual indicator, which is brought back to a desired reference point by rotating the micrometer.
Abstract:
Simultaneous multiple photometer measurements are made by simultaneously passing light to be measured through multiple light paths to different locations of a circularly variable filter; passing the light through the circularly variable filter at said locations; collecting the light passed through the circularly variable filter at each location; transmitting the light passed through the circularly variable filter to separate detectors; and measuring the light transmitted along each light path by said detectors.
Abstract:
A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.
Abstract:
A cam filter wheel apparatus is disclosed for tilting interference filters in order to achieve variation in the light wavelength transmitted by each filter. The wheel apparatus contains a number of filters each mounted so as to pivot and change its inclination with respect to an incident light beam as the filter wheel rotates each filter through the light path. The pivot motion is achieved by a cam follower associated with each filter which rides on a stationary cam track.
Abstract:
A method and apparatus for monitoring optical radiation which, in a preferred embodiment, takes the form of a biologically weighted ultraviolet radiant energy monitor which provides a direct indication of the hazards to humans from the ultraviolet radiant energy emanating from the optical radiation source being monitored. The source of radiation is first spectrally dispersed by passage through a suitable prism or diffraction grating. Portions of the spectrally dispersed radiation are mechanically masked in accordance with a predetermined biological weighting. The subsequent weighted output from the mechanical mask is then fed to a suitable detector. In the various embodiments of the ultraviolet hazard monitor, a quartz prism or diffraction grating spectrograph is utilized to spectrally disperse the incident radiation spatially and a plate coated with sodium salicylate or other suitable converter is placed in the exit plane of the spectrograph. The sodium salicylate plate fluoresces in the blue in response to incident ultraviolet radiation. The intensity of the biologically weighted blue light may then be conveniently and readily detected by a blue sensitive detector to provide an immediate readout of the potential ultraviolet radiation hazard from the unknown optical source.
Abstract:
Picosecond pulses produced from mode-locked lasers are passed through high Raman coefficient media in which a variety of Stokes and anti-Stokes frequency transitions result. The exiting pulse, which may have an envelope of the same order of magnitude time duration, contains a virtual continuum of wavelengths. The ''''white'''' pulse so produced is then spatially and/or phase divided into a series of ''''component'''' pulses each containing distinct spectral portions of that contained within the white pulse. Component pulses are then processed, for example, by passage through a sample or by passage through a modulator. Information so imparted, generally taking the form of an amplitude change, may serve to spectrally identify the nature of the sample or may serve a communications function.