Abstract:
A semiconductor cold emission device comprising at least two different semiconductors and a junction with a first region having n-type conductivity and a second region which is a p-type conductivity and an indirect transition type material whose effective forbidden bandwidth is smaller than that of the first region and means for applying voltage to the junction to cause electrons injected from the first region to the second region to be emitted from the surface of the second region to the exterior.
Abstract:
A semiconductor cold emission device comprising at least two different semiconductors and a junction with a first region having n-type conductivity and a second region which is a p-type conductivity and an indirect transition type material whose effective forbidden band width is smaller than that of the first region and means for applying voltage to the junction to cause electrons injected from the first region to the second region to be emitted from the surface of the second region to the exterior.
Abstract:
A semiconductor cold cathode for emitting electrons into a vacuum is described as comprising a semiconductor substrate of a first conductivity type in contact with an electrode for forming a potential energy barrier therewith and having a heterogeneous network of conductors and open spaces for enhancing the emission of electrons into the vacuum. In another embodiment of the invention, the surface-adjacent portion of the semiconductor substrate in the regions underlying the network of conductors is doped with an opposite type conductivity impurity to increase the potential energy barrier in the substrate adjacent to the conductors so as to further enhance electron emission from the open spaces in the heterogeneous network. In yet another embodiment of the invention, the surface-adjacent region of the substrate is provided with a layer of opposite-type conductivity material so as to further increase the potential barrier at the grids and also to increase the energy level of the emitted electrons.
Abstract:
A device for injecting electric charge into fluids consists of a p-n junction diode having the junctions so positioned that an active region of the semi-conductor is in contact with the fluid. A reverse electric field of a magnitude sufficient to release charge carriers having energies greater than the potential barrier at the surface of the semi-conductor is applied to the junction so that charge carriers are emitted from the active region. An electrode is also immersed in the fluid to enable a drift field to be established to attract charge carriers in the fluid away from the surface of the semi-conductor.
Abstract:
A photocathode epitaxial structure. The photocathode epitaxial structure includes an improved substrate stack. The improved substrate stack includes a GaAs substrate and one or more additional layers formed on the GaAs substrate. The one or more additional layers are configured to provide an improved substrate stack surface with predetermined characteristics for forming a semiconductor device on the improved substrate stack surface. The photocathode epitaxial structure further includes an InGaAs p-type photocathode formed on the improved substrate stack surface. The InGaAs p-type photocathode has a predetermined percentage of In.
Abstract:
A semiconductor power handling device, includes a cathode pillar, a gate surrounding the cathode pillar, and an anode spaced from the cathode by a nano-vacuum gap. An array of semiconductor power handling devices, each comprising a cathode pillar, a gate surrounding the cathode pillar, and an anode spaced from the cathode pillar by a nano-vacuum gap. The semiconductor power handling devices can be arranged as rows and columns and can be interconnected to meet the requirements of various applications. The array of power handling devices can be fabricated on a single substrate.
Abstract:
An electron emission device includes a number of electron emission units spaced from each other, wherein each of the number of electron emission units includes a first electrode, a semiconductor layer, an electron collection layer, an insulating layer, and a second electrode stacked with each other, the electron collection layer is in contact with the semiconductor layer and the insulating layer, and the electron collection layer is a conductive layer.
Abstract:
Some embodiments of vacuum electronics call for nanoscale field-enhancing geometries. Methods and apparatus for using nanoparticles to fabricate nanoscale field-enhancing geometries are described herein. Other embodiments of vacuum electronics call for methods of controlling spacing between a control grid and an electrode on a nano- or micron-scale, and such methods are described herein.