Abstract:
A wafer holder for a semiconductor manufacturing apparatus is provided with which a film may be evenly formed over the entire wafer surface and the incidence of particle generation is low, as well as a semiconductor manufacturing apparatus equipped with same.The wafer holder of the present invention is a ceramic wafer holder in which a heating body and a high-frequency electrode are embedded, and a diameter of the high-frequency electrode embedded in the ceramic is greater than the diameter of an upper high-frequency electrode disposed opposite the high-frequency electrode. A main component of the ceramic is preferably aluminum nitride, and the high-frequency electrode is preferably in the form of a film.
Abstract:
A substrate supporting mechanism includes a function for heating a substrate placed thereon in a process container of a substrate processing apparatus. The substrate supporting mechanism includes a worktable configured to place the substrate thereon and including a heating element made of silicon carbide and formed in a predetermined pattern; an electric feeder electrode configured to supply electricity to the heating element; and a partition member made of an electrically insulating material and interposed between portions adjacent to each other in the heating element formed in the predetermined pattern.
Abstract:
A substrate treating apparatus and related cleaning method are disclosed. The apparatus includes a stage heater disposed in the reaction chamber, serving as a first electrode during the generation of in-situ plasma, and supporting a substrate, a shower head disposed in the reaction chamber opposing the stage heater, serving as a second electrode during the generation of the in-situ plasma, and supplying a reaction gas into the reaction chamber, a remote plasma generator disposed external to the reaction chamber and configured to supply a cleaning gas to the reaction chamber following activation of the cleaning gas, and a gas transmitter disposed between the reaction chamber and the remote plasma generator and configured to transmit the reaction gas and the cleaning gas to the shower head.
Abstract:
Exemplary embodiments relate to a chuck assembly. The chuck assembly may include a chuck having a first channel having a fluid circulating therein, and a temperature control system adapted to maintain a temperature of the fluid within a first temperature range and vary the maintained temperature range of the fluid to a second temperature range from the first temperature range.
Abstract:
In a plasma processing apparatus equipped with a vacuum vessel and a sample table which is arranged within the vacuum vessel and has a sample mounting plane where a sample is mounted on an upper portion, for forming plasma within the processing chamber so as to process a sample mounted on the sample mounting plane, the plasma processing apparatus includes: a space arranged inside the sample table, into which a coolant is supplied; a ceiling plane of the space arranged opposite to the sample mounting plane, with which the coolant collides from plural portions; and an exhaust port via which the coolant which has collided with the ceiling plane to be evaporated is exhausted from the sample table.
Abstract:
A system to form a dielectric layer on a substrate from a plasma of dielectric precursors is described. The system may include a deposition chamber, a substrate stage in the deposition chamber to hold the substrate, and a remote plasma generating system coupled to the deposition chamber, where the plasma generating system is used to generate a dielectric precursor having one or more reactive radicals. The system may also include a precursor distribution system that includes at least one top inlet and a plurality of side inlets. The top inlet may be positioned above the substrate stage and the side inlets may be radially distributed around the substrate stage. The reactive radical precursor may be supplied to the deposition chamber through the top inlet. An in-situ plasma generating system may also be included to generate the plasma in the deposition chamber from the dielectric precursors supplied to the deposition chamber.
Abstract:
Various systems configured to reduce distortion of a resist during a metrology process are provided. The systems include an electron beam metrology tool configured to measure one or more characteristics of one or more resist features formed on a specimen. The electron beam metrology tool may be configured as a scanning electron microscope. The resist may be designed for exposure at a wavelength of about 193 nm. One system includes a cooling subsystem configured to alter a temperature of the specimen during measurements by the tool such that the resist feature(s) are not substantially distorted during the measurements. Another system includes a drying subsystem that is configured to reduce moisture proximate the specimen during measurements by the electron beam metrology tool such that the resist feature(s) are not substantially distorted during the measurements. An additional system may include both the cooling subsystem and the drying subsystem.
Abstract:
The invention relates to a thermal switch for particle-optical apparatus. In, for example, a cryo-TEM (transmission electron microscope), a sample 34 that is placed at an extremity 20 of a sample holder 7 can be maintained at, for example, the temperature of liquid nitrogen. There is a need to be able to inspect a sample at, for example, room temperature in a simple manner, without heating the microscope as a whole from the cryogenic temperature to room temperature. By using the thermal switch 40, this becomes possible. To this end, the thermal switch changes the thermal path between a cold source 22 in the apparatus and the extremity 20 of the sample holder 7, whereby, in one position, position 46a, a connection is made from the extremity 20 to the cold source 22, and, in the other position, position 46b, a connection is made to a portion 44 of the apparatus that is maintained at room temperature.
Abstract:
Embodiments of an apparatus and methods for forming a tantalum containing film using plasma enhanced atomic layer deposition are generally described herein. Other embodiments may be described and claimed.
Abstract:
To achieve high-resolution lithography, the temperature of a sample is controlled with heater wires during electron-beam lithography, the adverse effect of a magnetic field induced by the heater current is suppressed. Namely, heater wires are used to control the temperature of a sample so that the temperature will be maintained constant. In order to minimize the adverse effect of a magnetic field during the passage of currents through the heater wires, two heater wires are layered with the arrangement of the upper and lower sides, currents are fed to flow through the heater wires in mutually opposite directions, and the ratio of the current flowing through the upper heater wire to the one flowing through the lower heater wire is slightly changed from zero.