Abstract:
A method of manufacturing a printed wiring board. A printed wiring board having a substrate and a circuit pattern formed thereon is provided. At least one through-hole is formed in the substrate. A plurality of fine wires are inserted into the through-hole, and a molten solder is filled into the through-hole by a capillary action due to small gaps formed between the fine wires. A multilayer printed wiring board may be provided comprising a plurality of wiring board layers each having a substrate and a respective circuit pattern formed thereon. The molten solder filled in the through-hole electrically connects at lest two of the respective circuit patterns. The plurality of fine wires may be disposed in a conductive hollow tubular body which is inserted along with the fine wires into the through-hole. Also, the plurality of fine wires may be arranged as a mesh sheet that is formed into a tubular body and inserted into the through-hole. If an electronic component is to be connected with the printed wiring board through the through-hole, the leads of the electronic component may comprise the plurality of fine wires.
Abstract:
A layered structure comprising wiring layers and polyimide layers is formed on a ceramics board and a layered structure comprising wiring layers and polyimide layers is formed on an aluminum board. Both the structures are bonded together through adhesives to bring metal bumps formed on the former structure into electric contact with metal bumps formed on the surface of the latter structure and thereafter the aluminum board is removed.
Abstract:
A solder bump interconnection (34) bonding a metal bump (30) affixed to an integrated circuit component (10) to a terminal pad (18) of a printed circuit board (12) is formed using a consumable path (24) and a solder deposit (28) applied to the path spaced part from the terminal pad. In addition to the terminal pad, the printed circuit board includes a solder-nonwettable surface (21). The consumable path extends from the terminal pad on the solder-nonwettable surface and is formed oa solder-soluble metal. The solder deposit is heated, preferably by a laser beam, to form molten solder that is drawn along the pathdissolving the path as it proceeds. At the terminalmolten solder wets the pad and the metal bump and solidifies to complete the inerconnection.
Abstract:
A structure and method are disclosed for making high density circuit board. Using photosensitive or other dielectric materials over a circuitized power core, vias and lands are opened up, filled with joining metal and aligned with the next level, eliminating a major registration problem in building up a high density composite and reducing the number of steps in the manufacturing process.
Abstract:
A predetermined conductor pattern is formed on a sacrificial substrate. The substrate and conductors are covered with an elastomeric material, which is generally an uncured liquid. The elastomer is cured to form a solid. Then the sacrificial substrate is dissolved away leaving the conductor pattern embedded in the elastomeric material.
Abstract:
An electric connection of disconnection element is described as well as the corresponding connection or disconnection method and integrated circuits using such elements.The disconnection element consists of a disk or ingot joining two conductive tracks whose extremities are laid on wettable surfaces. Melting of the disk frees surface tension forces which separate its material into two balls centered on the wettable surfaces.The connection element is formed of two separate disks and, from the wettable surface pads, these disks are disposed opposite each other so that their material, once melted, unites to form a single droplet.A process is also disclosed for using these connection and disconnection elements for repairing defective integrated circuits.
Abstract:
A controllable fuse (10; 40; 50; 60; 80) has a pair of isolated conductor pads (26, 27), a solder connection (32; 41; 51) connected to the pads and providing a circuit connection therebetween, and at least one heater (14; 70, 75) to produce heat in response to an electrical signal. When sufficient heat is provided, the solder connection will desolder and disconnect the circuit connection between the conductor pads (26, 27). Major features are that the conductor pads and the heater are provided on a planar surface(s) (19, 25) as planar films and that redundancy for the fuse can be implemented by providing more than one heater (70, 75). A preferred manufacturing method for the fuse is disclosed which utilizes a solder retaining structure. Several fuse configurations are illustrated.
Abstract:
A method of making printed circuit boards having gold dot contacts formed on the terminal pads is disclosed. A first layer of copper is overlayed with a pattern of tin or solder which acts as a resist. The gold dot contacts are resistance welded to the terminal pads. The copper underlayment and its pattern of tin or solder carrying the gold dots is then bonded to an electrically insulating substrate, which can be flexible, to form a composite board which is then etched to form a printed circuit board having gold dot contacts thereon. Other materials than tin or solder can be employed so long as there is a difference in etchability between it and the copper foil.
Abstract:
Multilayer circuit boards composed primarily of silicon and containing buried ground planes and buried conducting runs are fabricated in one embodiment by positioning conductive patterns (12) on the surfaces of silicon substrates and melting a solder component of the conductive patterns (12) and allowing it to flow together with solder from the conductive patterns (12) on a stacked, adjacent silicon substrate (10). When the solder cools, a single conductive pathway (18) exists between adjacent silicon substrates (10) and bonds the adjacent substrates. If the substrates are coated with SiO.sub.2 (20), a multilayer structure with buried microwave strip lines (22) is formed in the bonding process. Alternatively, highly resistive silicon substrates (26) are used as a dielectric for microwave strip lines (24) on a top surface thereof and a conductive sheet (28) on the bottom surface thereof acts as a ground plane for microwave energy propagating along strip line (24).
Abstract:
A unique housing (104) of a portable radio transceiver (100) is described that takes advantage of the heat sinking, electrical shielding and structural characteristics of a battery. The unique electronic circuitry housing (104) includes a battery as a structural element thereof. In one illustrated housing (104), a stick battery (210) is attached to the side of a transmitter printed circuit panel (213). A logic printed circuit panel (212) and a receiver printed circuit panel (214) are positioned above and below the transmitter printed circuit panel (213), respectively, and are held together by interlocking side rails (206,207). The electronic circuitry housing of the present invention may be advantageously utilized in a variety of applications where electronic circuitry is operated from a battery.