Abstract:
A surface mount component (11) has at least one lead (12) which extends from a body portion (16) of the component (11) along an axis (14) through the component. An outer end portion of the lead (12) is formed into a circuit termination (20) of a shape which, when projected onto a plane perpendicular to the axis, encompasses a projection of the body portion (16) of the component onto the plane.
Abstract:
A device in which at least two separate electrical connections are made between a first member and a second member. The first member has at least two surfaces with at least one conductive element on each surface. These conductive elements are insulated from one another. The second member is mounted in an aperture of the first member. Electrically conductive regions of the second member, insulated from one another, are connected to the conductive elements of the first member.
Abstract:
In an electronic circuit arrangement mounted on a printed circuit board in which leadless circuit parts are attached to the printed circuit board with adhesive. A white paint is applied onto a region to which adhesive is applied, and an adhesive containing pigment contrastable to the white paint is applied onto the paint.
Abstract:
Electrical components (10 or 30) are fastened to a mounting surface (16) of a printed circuit board (11) by forming a plurality of thermoplastic pins (20, 35) projecting from the mounting surface of the board adjacent to positions where components are to be located. The component is placed on the board so that portions of the component are located adjacent to portions of the pins, following which portions of the pins are heated and formed about portions of the component to form plastic locking sections (22 or 37) that fasten the component to the board in a desired position. The mounting surface (16) of the board may be formed with a pocket (18 or 33) that receives and positions the component at the desired location, so that component leads (17 or 32) extend along the mounting surface to positions overlapping lead-contact areas (14, 34) of printed contact patterns deposited on the mounting surface, after which the leads are attached to the contact areas, as by reflow soldering.
Abstract:
A circuit board component, specifically a capacitor, which is configured to be machine-insertable into apertures of a circuit board to make a solderless electrical connection to electrical conductors positioned on and in the circuit board. The component is a cylindrical element which has portions of its outer surface affixed with an electrically conductive material which material is formed with a plurality of serrations. The serrations are designed to cut through and to make a force fit, gas tight, seal with the walled portions and the electrical conductors of a circuit board. The electrically conductive material also either forms a part of the component, such as capacitor plates and/or provides a contact surface for the connecting of an internally-mounted electrical component. An indexing means positioned on one end of the cylindrical element provides a mechanical indexing to insure the correct orientation of the component with regard to corresponding electrical contacts on the circuit board. A flange member extending from one end of the cylindrical element provides a stop in order to insure proper alignment of the component when the component is inserted into a circuit board by automatic means.
Abstract:
A wiring unit of high reliability is obtained without the need for any chemical treatment. It is obtained by assembling a wiring means having a predetermined wiring pattern and made from a conductive plate into an insulating frame having a predetermined pattern and electrically connecting circuit elements to the wiring means.
Abstract:
A wiring board includes an insulating layer having a first surface and a second surface, which are opposite to each other, upper wiring patterns on the first surface of the insulating layer, lower wiring patterns on the second surface of the insulating layer, intermediate wiring patterns, which are disposed in the insulating layer and are electrically connected to the upper wiring patterns and the lower wiring patterns, and a capacitor wire connected to corresponding wiring patterns of the upper wiring patterns, the lower wiring patterns, and the intermediate wiring patterns. The capacitor wire includes a core electrode line having a wire shape, an outer electrode line covering at least a portion of the core electrode line, and a dielectric line interposed between the core electrode line and the outer electrode line.
Abstract:
The present invention relates to a microwave signal transition component (1) having a first signal conductor side (2) and a second signal conductor side (3). The signal transition component (1) is arranged for transfer of microwave signals from the first signal conductor side (2) to the second signal conductor side (3). The transfer component (1) comprises at least one, at least partly circumferentially running, electrically conducting frame (4), a dielectric filling (5) positioned at least partly within said conducting frame (4), at least one filling aperture (6; 6a, 6b) miming through the dielectric filling, and, for each filling aperture (6; 6a, 6b), an electrically conducting connection (7; 7a, 7b) that at least partly is positioned within said filling aperture (6; 6a, 6b). The present invention also relates to a method for manufacturing a microwave signal transition component according to the above.