Abstract:
Components for use in vacuum electron devices are fabricated from highly oriented pyrolytic graphite (HOPG) and exhibit excellent thermal conductivity, low sputtering rates, and low ion erosion rates as compared to conventional components made from copper or molybdenum. HOPG can be reliably brazed by carefully controlling tolerances, calculating braze joint material volume, and applying appropriate compression during furnace operations. The resulting components exhibit superior thermal performance and enhanced resistance to ion erosion and pitting.
Abstract:
An illumination device (4) includes a light-emitting diode (light-emitting element) (9) and an LED substrate (light source substrate) (8) including a mounting surface (8a) on which the light-emitting diode (9) is mounted. A plurality of the light-emitting diodes (9) are mounted on the mounting surface (8a) of the LED substrate (8) and an LED driver (driving circuit element) (11) for driving the light-emitting diodes (9) is provided on the backside (8b) of the mounting surface (8a).
Abstract:
A radio frequency (RF) power coupling system is provided. The system has an RF electrode configured to couple RF power to plasma in a plasma processing system, multiple power coupling elements configured to electrically couple RF power at multiple power coupling locations on the RF electrode, and an RF power system coupled to the multiple power coupling elements, and configured to couple an RF power signal to each of the multiple power coupling elements. The multiple power coupling elements include a center element located at the center of the RF electrode and peripheral elements located off-center from the center of the RF electrode. A first peripheral RF power signal differs from a second peripheral RF power signal in phase.
Abstract:
The present invention discloses a surface feed-in electrode structure for thin film solar cell deposition, relating to solar cell technologies. The surface feed-in electrode structure uses a signal feed-in component with a flat waist and a semicircular feed-in end to connect the signal feed-in port by surface contact. The signal feed-in port is located in a hallowed circular area of a center of the backside of a cathode plate, and feeds in an RF/VHF power supply signal. An anode plate is grounded. The cathode plate is insulated with a shielding cover, and a through-hole is configured on the shielding cover. The effects include that, by using the surface feed-in at the center of the electrode plate, the feeding line loss of single-point or multi-point feed-in configurations can be overcome. Uniform large area and stable discharge driven by the RF/VHF power supply signal can be achieved, and the standing wave and the skin effect can be effectively removed. The production efficiency can be improved and the cost can be reduced.
Abstract:
The present disclosure provides a method for manufacturing a particle source, comprising: placing a metal wire in vacuum, introducing active gas and catalyst gas, adjusting a temperature of the metal wire, and applying a positive high voltage V to the metal wire to dissociate the active gas at the surface of the metal wire, in order to generate at a peripheral surface of the head of the metal wire an etching zone in which field induced chemical etching (FICE) is performed; increasing by the FICE a surface electric field at the top of the metal wire head to be greater than the to evaporation field of the material for the metal wire, so that metal atoms at the wire apex are evaporated off; after the field evaporation is activated by the FICE, causing mutual adjustment between the FICE and the field evaporation, until the head of the metal wire has a shape of combination of a base and a tip on the base; and stopping the FICE and the field evaporation when the head of the metal wire takes a predetermine shape.
Abstract:
A lamp device includes a lamp, a socket, two magnetic electrodes, and two electrode boxes. The lamp comprises a bulb portion, a stem portion, and two magnetic contacts. The socket has a receptacle portion configured to accept the lamp. The two magnetic electrodes are disposed in the receptacle portion. Each of the two electrode boxes encloses each of the two magnetic electrodes. The magnetic electrode is free to move in the electrode box, and the magnetic electrode makes an electrical contact all the time. The lamp device may further comprise a guiding groove and an insulating wall. The guiding groove may be provided on a bottom surface of the lamp between the two magnetic contacts.
Abstract:
The present invention discloses a surface feed-in electrode structure for thin film solar cell deposition, relating to solar cell technologies. The surface feed-in electrode structure uses a signal feed-in component with a flat waist and a semicircular feed-in end to connect the signal feed-in port by surface contact. The signal feed-in port is located in a hallowed circular area of a center of the backside of a cathode plate, and feeds in an RF/VHF power supply signal. An anode plate is grounded. The cathode plate is insulated with a shielding cover, and a through-hole is configured on the shielding cover. The effects include that, by using the surface feed-in at the center of the electrode plate, the feeding line loss of single-point or multi-point feed-in configurations can be overcome. Uniform large area and stable discharge driven by the RF/VHF power supply signal can be achieved, and the standing wave and the skin effect can be effectively removed. The production efficiency can be improved and the cost can be reduced.
Abstract:
Disclosed is an arrangement for a cut type electrode, wherein the removal of a coil is prevented and the generation of gap between turns of a coil caused by repeatedly turning on and off of the lamp is suppressed. The electrode, which is for a discharge lamp, comprises: a core rod having a leading end portion for discharge formed by a cutting process; and a coil wound around the core rod in n-turns in a state exposing the leading end portion, wherein at least a first portion between a first turn and a turn adjacent to the first turn and a second portion between an n-th turn and a turn adjacent to the n-th turn are welded.
Abstract:
A field electron emitter includes a thin film layer including a carbon nanotube (“CNT”) disposed on a substrate, wherein the thin film layer includes nucleic acid.
Abstract:
Provided are a field emission electrode, a method of manufacturing the field emission electrode, and a field emission device including the field emission electrode. The field emission electrode may include a substrate, carbon nanotubes formed on the substrate, and a conductive layer formed on at least a portion of the surface of the substrate. Conductive nanoparticles may be attached to the external walls of the carbon nanotubes.