Aqueous effluent treatment system
    111.
    发明授权

    公开(公告)号:US12076712B2

    公开(公告)日:2024-09-03

    申请号:US17431902

    申请日:2020-02-24

    Abstract: Aqueous effluent treatment system including a separation reactor having a reactor chamber fluidly connected to an aqueous effluent source, connected via a pump to an inlet of the reactor chamber, a fluid extraction system connected to a liquid effluent outlet at a top of the reactor chamber, and a solid residue extraction system connected to a solid residue outlet at a bottom of the reactor chamber. The separation reactor is operable to generate pressures exceeding 22 MPa and temperatures exceeding 300° C. in the reactor chamber configured to generate a supercritical zone in an upper portion of the reactor chamber to which the liquid effluent outlet is connected, and a subcritical zone in a lower portion of the chamber within the reactor chamber to which the solid residue outlet is connected. The solid residue extraction system comprises an output circuit comprising a collector coupled to the solid residue outlet via a collector input valve (V1) and to a water output tank via a filter and a collector liquid output valve (V4) operable to be opened to cause a pressure drop at the solid residue outlet to draw solid residue out of the reactor chamber, the solid residue extraction system further comprising a gas feed circuit connected via a gas supply valve (V5) to the collector, the gas supply valve operable to be opened to extract solid residues in the collector to a solids output tank connected to the collector via a collector solids output valve (V6).

    METHOD FOR PREPARING SUPERCRITICAL FLUID BY DEEP-SEA PRESSURE

    公开(公告)号:US20230149873A1

    公开(公告)日:2023-05-18

    申请号:US17550418

    申请日:2021-12-14

    CPC classification number: B01J3/008 B01J3/002 B01J3/006 B01J3/06

    Abstract: A method for preparing supercritical fluid by deep-sea pressure is provided and belongs to the technical field of supercritical fluid preparation. The method includes the following steps of: placing low-pressure fluid in a closed flexible container, sending the closed flexible container down to a location of a sea at a depth where a seawater pressure meets a requirement by using a powered or unpowered traction device, leaving the flexible container standing still until a volume of the flexible container does not change, wrapping the closed flexible container with a rigid pressure-bearing container, transferring the closed flexible container to the sea surface by the powered or unpowered traction device, and taking out the fluid in the flexible container as supercritical fluid. Then the supercritical fluid is produced. Therefore, the process of preparing supercritical (high pressure) liquid in deep-sea is safer and more stable than the preparation way on land.

Patent Agency Ranking