Abstract:
A MEMS device formed by a body; a cavity, extending above the body; mobile and fixed structures extending above the cavity and physically connected to the body via anchoring regions; and electrical-connection regions, extending between the body and the anchoring regions and electrically connected to the mobile and fixed structures. The electrical-connection regions are formed by a conductive multilayer including a first semiconductor material layer, a composite layer of a binary compound of the semiconductor material and of a transition metal, and a second semiconductor material layer.
Abstract:
A method embodiment includes providing a micro-electromechanical (MEMS) wafer including a polysilicon layer having a first and a second portion. A carrier wafer is bonded to a first surface of the MEMS wafer. Bonding the carrier wafer creates a first cavity. A first surface of the first portion of the polysilicon layer is exposed to a pressure level of the first cavity. A cap wafer is bonded to a second surface of the MEMS wafer opposite the first surface of the MEMS wafer. The bonding the cap wafer creates a second cavity comprising the second portion of the polysilicon layer and a third cavity. A second surface of the first portion of the polysilicon layer is exposed to a pressure level of the third cavity. The first cavity or the third cavity is exposed to an ambient environment.
Abstract:
An embodiment is MEMS device including a first MEMS die having a first cavity at a first pressure, a second MEMS die having a second cavity at a second pressure, the second pressure being different from the first pressure, and a molding material surrounding the first MEMS die and the second MEMS die, the molding material having a first surface over the first and the second MEMS dies. The device further includes a first set of electrical connectors in the molding material, each of the first set of electrical connectors coupling at least one of the first and the second MEMS dies to the first surface of the molding material, and a second set of electrical connectors over the first surface of the molding material, each of the second set of electrical connectors being coupled to at least one of the first set of electrical connectors.
Abstract:
A method for producing an integrated circuit pointed element is disclosed. An element has a projection with a concave part directing its concavity towards the element. The element includes a first etchable material. A zone is formed around the concave part of the element. The zone includes a second material that is less rapidly etchable than the first material for a particular etchant. The first material and the second material are etched with the particular etchant to form an open crater in the concave part and thus to form a pointed region of the element.
Abstract:
An acceleration sensor achieving improvement of sensitivity and comprehensive miniaturization as a device includes a first sensor. The first sensor is furnished with an electrostatic capacitor that is configured such that a first fixed electrode, a second fixed electrode and a movable electrode are intensively arranged in a row. In the electrostatic capacitor, the first fixed electrode, the second fixed electrode and the movable electrode are arranged adjoining one another in acceleration detection direction (y-axis direction) at a position corresponding to the center of a weight in a plane view of a substrate. At one of longitudinal-side's ends of each electrode (one of ends in x-axis direction), connectors are provided so as to connect the first fixed electrode and the second fixed electrode to the substrate by connectors.
Abstract:
A micromechanical device having a main plane of extension includes a sensor wafer, an evaluation wafer, and an intermediate wafer situated between the sensor wafer and the evaluation wafer, the evaluation wafer having at least one application-specific integrated circuit. The sensor wafer and/or the intermediate wafer includes a first sensor element and a second sensor element spatially separated from the first sensor element, the first and second sensor elements being respectively located in a first cavity and a second cavity each formed by the intermediate wafer and the sensor wafer, a first gas pressure in the first cavity differing from a second gas pressure in the second cavity, and the intermediate wafer having an opening at a point in a direction perpendicular to the main plane of extension.
Abstract:
A physical quantity sensor has a package, which is provided with a substrate and a lid and has an internal space inside, and a functional element which is accommodated in the internal space, the lid is formed on a partition wall section which is provided on the periphery of the internal space in planar view and has a communication hole which causes a lower surface at the substrate side to communicate with an upper surface at the opposite side to the substrate, and the communication hole communicates with the internal space via a groove which is formed in the substrate.
Abstract:
A method embodiment for forming a micro-electromechanical (MEMS) device includes providing a MEMS wafer, wherein a portion of the MEMS wafer is patterned to provide a first membrane for a microphone device and a second membrane for a pressure sensor device. A carrier wafer is bonded to the MEMS wafer, and the carrier wafer is etched to expose the first membrane for the microphone device to an ambient environment. A MEMS substrate is patterned and portions of a first sacrificial layer are removed of the MEMS wafer to form a MEMS structure. A cap wafer is bonded to a side of the MEMS wafer opposing the carrier wafer to form a first sealed cavity including the MEMS structure. A second sealed cavity and a cavity exposed to an ambient environment on opposing sides of the second membrane for the pressure sensor device are formed.
Abstract:
An anti-stiction method is proposed in an inertial micro-electro-mechanical device. The device includes: a mobile mass, suspended to an armature via a spring, and having at least one mobile electrode; and at least one fixed electrode rigidly attached to the armature, each fixed electrode cooperating with one of the at least one mobile electrode to form a pair of electrodes. The anti-stiction method carries out a step of detecting, for at least one stuck pair of electrodes, a stiction associated to a stiction force and a step of applying, during a predetermined time period, a predetermined voltage between the electrodes of at least one of the pair or pairs of electrodes, so as to create an electrostatic force which generates a displacement of the mobile mass according to the direction of the stiction force.
Abstract:
A sensor includes: a substrate on which an active chip including a semiconductor circuit is disposed; and a passive chip including an acceleration sensor, and a thick portion and a thin portion, the thick portion being disposed on the substrate so as to be in contact therewith. An active chip terminal is disposed on the active chip. A passive chip terminal is disposed on the passive chip at the thin portion. The passive chip terminal and the active chip terminal face each other and are connected via a bump.