Abstract:
A synchronous drive apparatus and method, wherein the apparatus comprises a plurality of rotors comprising at least a first and a second rotor. The first rotor has a plurality of teeth for engaging the engaging sections of an elongate drive structure, and the second rotor has a plurality of teeth for engaging the engaging section of the elongate drive structure. A rotary load assembly is coupled to the second rotor. The elongate drive structure engages about the first and second rotors. The first rotor is arranged to drive the elongate drive structure and the second rotor is arranged to be driven by the elongate drive structure. One of the rotors has a non-circular profile having at least two protruding portions alternating with receding portions. The rotary load assembly is such as to present a periodic fluctuating load torque when driven in rotation, in which the angular positions of the protruding and receding portions of the non-circular profile relative to the angular position of the second rotor, and the magnitude of the eccentricity of the non-circular profile, are such that the non-circular profile applies to the second rotor an opposing fluctuating corrective torque which reduces or substantially cancels the fluctuating load torque of the rotary load assembly.
Abstract:
A requested volume flow ratio calculated based on a requested torque, an amount of two times a spit-back gas amount at the valve overlap time calculated based on a requested residual gas rate, and a spit-back gas amount of the time when an intake valve is closed are added together, to set a requested valve passing gas amount of the intake valve, thereby determining a target operating characteristic of the intake valve based on the requested valve passing gas amount.
Abstract:
The present invention provides a thrust cam cap for an engine camshaft disclosed to effectively place a thrust cam cap to limit the longitudinal movement of an engine camshaft according to the location of a thrust bearing cap that limits the longitudinal movement of the crankshaft, thereby maintaining a smooth operation of a timing belt or a timing chain in spite of thermal expansion of the crankshaft and the camshaft while an engine is in operation.
Abstract:
In a hydraulic camshaft adjuster for an internal combustion engine including a hydraulic operating unit for adjusting the angular position of the camshaft relative to a camshaft drive by way of a hydraulic control valve with a valve housing in which a control piston is disposed for controlling the supply of hydraulic fluid to, and its removal from, the hydraulic operating unit and to which hydraulic fluid is supplied from the camshaft by way of a pressure channel which is formed into the valve housing so as to extend along the outer surface thereof and a sleeve tightly surrounds at least the part of the valve housing which includes the channel for tightly covering the channel.
Abstract:
There is disclosed a holding device for holding two rotary members relative to one another. The device has two holding members and a connecting member to which the holding members may be clamped by respective clamps. One of the holding members may be selectively positioned along the connecting member and clamped thereto at selected distances from the other holding member.
Abstract:
A variable valve timing control apparatus employs a five-blade vane member fixedly connected to a camshaft end and rotatably disposed in a phase-converter housing formed integral with a sprocket driven by an engine crankshaft. Five phase-retard chambers and five phase-advance chambers are defined by five blades of the vane member and the housing, for creating a phase change of the vane member relative to the housing. A circumferential width of each of a first pair of blades, located on both sides of a first blade having a maximum circumferential width, is dimensioned to be less than a circumferential width of each of a second pair of blades, circumferentially spaced apart from the first blade rather than the first pair. The circumferential width of each of the second pair of blades is dimensioned to be less than the maximum circumferential width of the first blade.
Abstract:
A ring filter comprises a frame and a filter section. The frame comprises at least two first frame elements. One of the first frame elements is arranged on the axial front faces of the filter section and is fixedly connected thereto. The filter section extends in the axial direction between the two first frame elements. The filter section has a shape deviating from a straight line, as seen in longitudinal section. This significantly increases the effective filter surface and reduces throughflow resistance and the risk of the ring filter becoming clogged.
Abstract:
A device (1) for changing the timing of an internal-combustion engine (2) is provided that has a camshaft adjuster (5), which is supported on a non-rotating bearing journal (6). A driving wheel (8) of the camshaft adjuster (5) is driven by a crank-shaft (3) via a first traction mechanism drive (7). The rotation of the driving wheel (8) is transferred via an actuator (10) to a driven part (9), which is arranged so that it can rotate relative to the driving wheel (8). Second and third traction mechanism drives (11, 12) create a drive connection between the driven part (9) and two camshafts (4, 4a).
Abstract:
A valve train including a cylinder having a cylinder axis and a cylinder head, the valve train has a first operating mechanism including a cam follower driven by a first valve train cam provided on a cam shaft so as to open and close the first engine valve and a drive mechanism having a drive shaft for moving a supporting position of the cam follower to thereby change a valve operation characteristic of the first engine valve, and a second operating mechanism including a second cam follower driven by a second valve train cam so as to open and close the second engine valve, wherein the drive shaft of the drive mechanism is arranged at a position lower than the cam shaft and between the first and the second engine valve in a reference direction.
Abstract:
A method that provides increased flexibility to measure dynamic range of a rotating system is provided. The method includes the steps of: providing a first rotating member; providing a second rotating member suitably engaged to the first rotating member; providing a set of sensors disposed to sense variations in characteristics along a circumference of the first member and the second member respectively; providing a controller for receiving information sensed by the sensors; determining a rate of rotation of the rotating members; selectively using the sensed information thereby at different rate of rotation different amount of the sensed information is used.