Abstract:
The light measurement apparatus according to the present invention includes: an integrating sphere; a reference calibration light source body holding unit that is arranged on the integrating sphere and to which a reference calibration light source body is attached; a test light source body holding unit that is arranged on the integrating sphere and to which a test light source body to be measured is attached; a light detection unit that is arranged on the integrating sphere and detects light from the reference calibration light source body and the test light source body; and a control unit that controls lighting of the reference calibration light source body and the test light source body, the light measurement apparatus being configured so that only either one of the reference calibration light source body and the test light source body is able to selectively emit light in the integrating sphere.
Abstract:
Systems and methods for measuring an intensity characteristic of a light beam are disclosed. The methods include directing the light beam into a prism assembly that includes a thin prism sandwiched by two transparent plates, and reflecting a portion of the light beam by total-internal-reflection surface to an integrating sphere while transmitting the remaining portion of the light beam through the two transparent plates to a beam dump. The method also includes detecting light captured by the integrating sphere and determining the intensity characteristic from the detected light.
Abstract:
An optical characteristic measuring apparatus includes a hemispheric portion having a reflective surface on its inner wall, and a plane portion arranged to close an opening of the hemispheric portion and having a reflective surface on an inner-wall side of the hemispheric portion. The plane portion includes a first window occupying a range including a substantial center of curvature of the hemispheric portion for attaching a light source to the first window. At least one of the hemispheric portion and the plane portion includes a plurality of second windows arranged in accordance with a predetermined rule for extracting light from inside the hemispheric portion.
Abstract:
A quantum efficiency measurement method includes the steps of: disposing a sample at a predetermined position in an integrator having an integrating space; applying excitation light to the sample and measuring a spectrum in the integrating space as a first spectrum through a second window; configuring an excitation light incident portion so that excitation light after having passed through the sample is not reflected in the integrating space; applying the excitation light to the sample and measuring a spectrum in the integrating space as a second spectrum through the second window; and calculating a quantum efficiency of the sample based on a component constituting a part of the first spectrum and corresponding to a wavelength range of the excitation light, and a component constituting a part of the second spectrum and corresponding to a wavelength range of light generated by the sample from the received excitation light.
Abstract:
Provided are an integrating sphere photometer and a measuring method of the same. The integrating sphere photometer includes an integrating sphere including a left hemisphere and a right hemisphere, a photometer disposed on the center surface of the right hemisphere, a photometer baffle disposed in front of the photometer to be spaced apart therefrom, a light source to be tested disposed at the center region of the integrating sphere to illuminate light to at least an illumination region of the left hemisphere, an auxiliary lamp part disposed in the vicinity of a contact region between the left hemisphere and the right hemisphere to illuminate light to the illumination region, and an auxiliary lamp baffle disposed around the auxiliary lamp part to prevent the light emitted from the light source to be tested from being directly illuminated to the auxiliary lamp part and also to prevent the light emitted from the auxiliary lamp part from being directly illuminated to the light source to be tested.
Abstract:
A concave cell for the collection of radiated light including a body with a concave surface and an unmodified flat surface opposite thereto, and a reflective surface coupled to the body across from the concave surface, said reflective surface including an opening and a photo detector operatively coupled thereto. A method of collecting light by reflecting light inside the concave cell, striking the light at the concave surface, scattering the light at the concave surface, and registering the scattered light with the photo detector. A method of increasing uniformity of light registered in a photo detector. A method of making a concave cell.
Abstract:
A quantum efficiency measurement method includes the steps of: disposing a sample at a predetermined position in an integrator having an integrating space; applying excitation light to the sample and measuring a spectrum in the integrating space as a first spectrum through a second window; configuring an excitation light incident portion so that excitation light after having passed through the sample is not reflected in the integrating space; applying the excitation light to the sample and measuring a spectrum in the integrating space as a second spectrum through the second window; and calculating a quantum efficiency of the sample based on a component constituting a part of the first spectrum and corresponding to a wavelength range of the excitation light, and a component constituting a part of the second spectrum and corresponding to a wavelength range of light generated by the sample from the received excitation light.
Abstract:
The invention relates an apparatus and method for forming a diffuse reflector. In one embodiment of the invention, a diffuse reflector is formed by exposing transmissive particles of a pre-determined purity to pressure and forming a material having desired diffuse reflective properties. The transmissive particles may further be thermally treated, such as by sintering, to form material having desired diffuse reflective properties. The treated transmissive particles may then be disposed in a vessel and define a cavity therein to form an integrated cavity diffuse reflector.
Abstract:
In a method of calibrating a light delivery device (10) having a solid state light source (12), for example comprising LEDs of an LED array, and an intensity control unit (16) comprising LED array driver and a dimmer module for generating a control signal for controlling at least the intensity of the light source, the light source is temporarily connected by a light guide (24; 24, 26) to a radiometer (38) for detecting irradiance of the delivered light. The light delivery device has a memory (30) for storing control signal parameters and associated radiance levels. The light delivery device is calibrated by adjusting the control signal parameters, e.g. a PWM duty cycle of a control signal to each of a series of predetermined settings, obtaining from the radiometer a corresponding series of delivered light irradiance levels measured thereby, storing the irradiance levels and associated control signal parameters in memory, and applying a best fit algorithm to the irradiance measurements and control signal parameters. Thereafter, a desired irradiate level can be set by selecting the best fit control signal parameters, such as duty cycle of a PWM control or other parameters. Output intensity levels may be measured at the same time as the irradiance levels and used to compensate for light source output level changes when setting a desired irradiance level.
Abstract:
An apparatus may have a light source configured to generate light, a reflector configured to collect the light and direct the light in a desired direction, a spectral filter assembly configured to receive the light from the reflector. The spectral filter assembly may have a stationary frame and a plurality of filter elements supported by the stationary frame. Filter elements of the plurality of filter elements may simultaneously filter a desired quantity of light within wavelength band to provide a filtered output light beam. A homogenizer may be configured to receive the filtered output light beam and produce a homogenized light beam having a substantially uniform irradiance distribution across a cross-section of the homogenized light beam.