Abstract:
An apparatus for emulating various known night sky illumination conditions. The apparatus comprises a plurality of electrically-powerable LEDs which are disposed in an array and have respective spectral curves centered at different wavelengths in the visible to the short wave infrared wavebands, and means for fixing the temperatures of the LEDs to avoid temperature-induced changes in their spectral curves. Additionally, the apparatus includes means for varying the light intensities of the individual LEDs so that the combination of their spectral curves matches the spectrum of the known night sky illumination condition to be emulated, and means for regulating the total amount of light collected from the array so that the cumulative spectrum has the same intensity as the known night sky illumination condition to be emulated.
Abstract:
The apparatus and methods herein provide light sources and spectral measurement systems that can improve the quality of images and the ability of users to distinguish desired features when making spectroscopy measurements by providing methods and apparatus that can improve the dynamic range of data from spectral measurement systems.
Abstract:
Method and arrangement for changing the spectral composition and/or intensity of illumination light and/or specimen light in an adjustable manner, wherein a spatial separation into radiation components of different polarization is carried out with a first polarizing device, a spectral, spatial splitting of at least one radiation component is carried out with first dispersion device, the polarization state of at least one part of the spectrally spatially split radiation component is changed, and a spatial separation and/or combination of radiation components of different polarization are/is carried out by a second polarizing device, wherein a spatial combination of radiation components which are changed and not changed with respect to their polarization state is advantageously carried out by a second dispersion device.
Abstract:
A method for spatially resolved color determination, comprising the steps of projecting (S101) a first structured-light pattern having a first wavelength of light onto a dental object; detecting (S102) a first spatially resolved optical parameter set based on the reflected or remitted first structured-light pattern; projecting (S103) a second structured-light pattern having a second wavelength of light onto the dental object; detecting (S104) a second spatially resolved optical parameter set based on the reflected or remitted second structured-light pattern; and calculating (S105) a third spatially resolved optical parameter set at a third wavelength of light based on the first and second spatially resolved optical parameter sets.
Abstract:
A spectrometer includes an illuminating section; a receiving section configured to detect radiation reflected from an object including an optically inhomogeneous scattering medium; a hardware section configured to obtain a solution of an inverse problem to reconstruct an absorption spectrum of the optically inhomogeneous scattering medium, wherein the illuminating section includes at least one light-emitting diode source, a radiation spectral curve of which is divided, by at least two spectral filters having different spectral transmission curves, into at least two spectral regions, to form an equivalent radiation spectrum from at least two spectral sources, and wherein the hardware section applies the solution of the inverse problem based on information about a spectral content of the radiation of the illuminating section, a signal obtained in a form of a response from the optically inhomogeneous scattering medium, and a spectral sensitivity curve of the receiving section.
Abstract:
A monolithic spectrometer (10) for spectrally resolving light (L), comprises a body (2) of solid material having optical surfaces (3,4,5,6a-6c,8) configured to guide the light (L) along an optical path (E1,E2,E3,E4) inside the body (2). The optical surfaces of the body (2) comprise a segmented focusing surface (6a,6b) comprising first and second continuously functional optical shapes (Ca,Cb) to focus received parts of respective beams (La,Lb) onto respective focal position (fa,fb) in an imaging plane (P) outside the body (2). The second continuously functional optical shape (Cb) is separated from the first continuously functional optical shape (Ca) by an optical discontinuity (Dab) there between.
Abstract:
A divided pulse nonlinear optical source may be generated by combining nonlinear wave generation techniques with pulse division that can divide a parent pulse into N divided pulses, each divided pulse separate temporally. The N divided pulses can be passed into a nonlinear optical medium to generate an output. The output can include at least one output pulse for each divided pulse. The center wavelengths of each output pulse can be tuned so that each may have a center wavelength that is the same as, or differs from, each other output pulse. In some embodiments, the output pulses may be combined to generate the output. The output can be power scalable and wavelength tunable.
Abstract:
A spectrometer includes an illuminating section; a receiving section configured to detect radiation reflected from an object including an optically inhomogeneous scattering medium; a hardware section configured to obtain a solution of an inverse problem to reconstruct an absorption spectrum of the optically inhomogeneous scattering medium, wherein the illuminating section includes at least one light-emitting diode source, a radiation spectral curve of which is divided, by at least two spectral filters having different spectral transmission curves, into at least two spectral regions, to form an equivalent radiation spectrum from at least two spectral sources, and wherein the hardware section applies the solution of the inverse problem based on information about a spectral content of the radiation of the illuminating section, a signal obtained in a form of a response from the optically inhomogeneous scattering medium, and a spectral sensitivity curve of the receiving section.
Abstract:
An optical testing system includes: a testing probe, a collecting unit, and a processing unit, wherein the testing probe includes a plurality of spectrum photodiodes used for emitting and casting monochromatic light to a sample, wherein the wavelength of the light emitted by at least one spectrum photodiode is different from that of any other. The collecting unit collects multi-way signal light obtained after the emitted monochromatic light is reflected by the sample surface. The processing unit includes a photoelectric conversion module, an adding module and a testing module. The photoelectric conversion module converts the collected multi-way signal light respectively to multi-way electrical signals. The adding module performs an adding operation for the multi-way electrical signal to obtain an operation result. The testing module tests a quality parameter of the sample according to the operation result, and outputs a testing result.
Abstract:
Optical analysis systems and methods may be used for analyzing the characteristics, including compositions, of cement additives, which may be used in formulating a cement slurry. For example, a cement additive may be optically interacting with an integrated computational element (“ICE”) configured to detect a characteristic of the cement additive. An output signal may then be generated corresponding to the characteristic of the cement additive detected by the ICE, which may be received and processed with a signal processor to yield a value for the characteristic of the cement additive. The value of the characteristic of the cement additive may then be used to determine an amount of the cement additive for use in producing a cement slurry.