Abstract:
The present invention provides a color measuring apparatus and a printing apparatus that enable the user to easily keep a backing plate. A color measuring apparatus includes a holder on which a backing plate is capable of being attached, the backing plate having a white portion and a black portion, and a sensor for measuring color patterns on a sheet on the backing plate. Either one of the white portion and the black portion faces the sensor, depending on the attached state of the backing plate on the holder.
Abstract:
Provided are patterned nanoporous gold (“P-NPG”) films that may act as at least one of an effective and stable surface-enhanced Raman scattering (“SERS”) substrate. Methods of fabricating the P-NPG films using a low-cost stamping technique are also provided. The P-NPG films may provide uniform SERS signal intensity and SERS signal intensity enhancement by a factor of at least about 1×107 relative to the SERS signal intensity from a non-enhancing surface.
Abstract:
A dental color measurement tool disposed opposite an opening portion for capturing light from an artificial tooth to undergo color measurement with a color measurement device includes at least one pair of guide posts having an engaging portion corresponding to an engaging portion on the color measurement device side, and an abutment post disposed between the pair of guide posts and having a pointed convex shape to which the artificial tooth can be mounted. The abutment post has a color measurement reference surface in a color measurement light axis direction as the vicinity of a focus position of the color measurement device in a photographing state. When performing color measurement photographing, the artificial tooth is mounted to the abutment post to position the front thereof at the color measurement reference surface. Thus, the artificial tooth can be stably retained at a suitable position with respect to the color measurement device.
Abstract:
A machine which transports and processes print media can incorporate a vacuum chamber. The vacuum chamber can be within a print media transport device in order to maintain a print medium at a uniform predetermined distance from a print media processing device, such as an image printing device (e.g., an inkjet printer), an image scanning device, or a spectrophotometer). In one embodiment the vacuum chamber is located within a roller that transports print media past the processing device. In another embodiment the vacuum chamber is located on an opposite side of a belt that transports print media past the processing device. In each of the embodiments the size of the vacuum chamber opening, which defines the vacuum area on the transport device, and also the amount of vacuum pressure may be selectively adjusted depending upon the size and weight, respectively, of the print medium being processed.
Abstract:
Cuvette, comprising at least one measuring area on each one of two arms that are pivotally connected to each other such that from a swung-apart condition, they can be swung together into a measuring position in which the two measuring areas have a distance for positioning a sample between the measuring areas, and means for positioning the two arms in a measuring position in a cuvette shaft of an optical measuring device with a sample between the two measuring areas in a beam path of the optical measuring device that crosses the cuvette shaft.
Abstract:
The color measurement instrument includes an illumination system and a sensing system. The illumination system is composed of a light emitting element and a light pipe. The light pipe has an incident surface at an illuminating end of the light emitting element and an ejected surface adjacent to a sensing platform of a sensing system. The sensing system includes a light collection device and a sensing platform for disposing a testing object. The light collection device includes an aperture stop for adjusting the shape of a light spot on a color sensor, a light collection lens set for detecting and projecting an image of a testing object on the sensing platform, a field stop for separating a light from an area, an uniform lens set for spreading the image on the field stop, and a color sensor for capturing and analyzing the color to adjust the brightness.
Abstract:
A shuttering and sealing device is disclosed. In one embodiment, the device includes an aperture through which light may pass to an optical sensor, a seal surrounding the aperture, and a shutter movable between an open position in which the shutter does not cover the aperture and a closed position in which the shutter covers the aperture and the seal seals the shutter around the aperture.
Abstract:
A reference-color measurement step of obtaining a reference-color measurement value by measuring a spectroscopic-radiation luminance of a light being emitted from a reference-color portion in a measurement direction, or a tristimulus value thereof, using a light-source-color measuring instrument 5, without irradiating the reference-color portion with a light source for measurement, in a predetermined measurement environment; an objective-portion measurement step of obtaining an objective-portion measurement value by measuring a spectroscopic-radiation luminance of a light being emitted from a measurement-objective portion in the measurement direction, or a tristimulus value thereof, using the light-source-color measuring instrument 5, without irradiating the measurement-objective portion with a light source for measurement, in the measurement environment; and a color identification step of finding a color of the measurement-objective portion by means of computation from a ratio of the objective-portion measurement value with respect to the reference-color measurement value are equipped. Even when measuring a color of such a body, like a body including a fluorescent material, whose reflectivity has changed depending on the type of light source, it is possible to measure the color of such a body accurately.
Abstract:
Disclosed are embodiments of a machine which transports and processes print media. The machine incorporates a vacuum chamber within a print media transport device in order to maintain a print medium at a uniform predetermined distance from a print media processing device, such as an image printing device (e.g., an inkjet printer), an image scanning device, or a spectrophotometer). In one embodiment the vacuum chamber is located within a roller that transports print media past the processing device. In another embodiment the vacuum chamber is located on an opposite side of a belt that transports print media past the processing device. In each of the embodiments the size of the vacuum chamber opening, which defines the vacuum area on the transport device, and also the amount of vacuum pressure may be selectively adjusted depending upon the size and weight, respectively, of the print medium being processed.
Abstract:
The color measurement instrument includes an illumination system and a sensing system. The illumination system is composed of a light emitting element and a light pipe. The light pipe has an incident surface at an illuminating end of the light emitting element and an ejected surface adjacent to a sensing platform of a sensing system. The sensing system includes a light collection device and a sensing platform for disposing a testing object. The light collection device includes an aperture stop for adjusting the shape of a light spot on a color sensor to avoid glare, a light collection lens set for detecting and projecting an image of a testing object on the sensing platform onto a field stop, a field stop for separating a light from an area other than the effective sensing area of the sensing platform, an uniform lens set for spreading the image on the field stop over the whole color sensor, and a color sensor for capturing and analyzing the color to adjust the brightness and chroma and output an analysis signal.