Abstract:
A spectral colorimetric apparatus includes a housing which includes a side wall. An outer surface of the side wall is an adjustment surface capable of adjusting a position of a linear sensor by moving while attaching the linear sensor to the adjustment surface. The linear sensor is supported by the side wall of the housing while abutting on the adjustment surface and receives a light beam that is dispersed by a concave surface reflection type diffraction element and passes through an opening portion. The adjustment surface is parallel to a tangential line at a part of a Rowland circle of the concave surface reflection type diffraction element, through which a light beam received by the linear sensor passes.
Abstract:
An optical wavelength dispersion device includes a first substrate, an input unit formed on the first substrate having a slit for receiving an optical signal, a grating formed on the first substrate for producing a first light beam form the optical signal for outputting, and a second substrate covered on the top of the input unit and the grating, wherein the input unit and the grating are formed from a photo-resist layer by high energy light source exposure.
Abstract:
An imaging assembly for a spectrometer includes a substrate with first and second modules thereon containing respective arrays of detector elements positioned so the arrays are elongated along a first axis with a gap therebetween. A third module including a third array of detector elements is also thereon, spaced from the first axis, at least as long as the gap, and smaller than the elongation of either of the first or second arrays. Further thereon are first and second slits elongated along a second axis spaced from and generally parallel to the first axis, each being at least as long as the respective arrays. A third slit at least as long as the gap is also therein, spaced from the first axis, second axis, and third array such that the gap, third slit, and third array are generally along a third axis generally perpendicular to the first and second axis.
Abstract:
In the spectroscopy module 1, a light detecting element 4 is provided with a light passing opening 4b through which light made incident into a body portion 2 passes. Therefore, it is possible to prevent deviation of the relative positional relationship between the light passing opening 4b and a light detection portion 4a of the light detecting element 4. Further, an optical element 7, which guides light made incident into the body portion 2, is arranged at the light passing opening 4b. Therefore, light, which is to be made incident into the body portion 2, is not partially blocked at a light incident edge portion of the light passing opening 4b, but light, which is to be made incident into the body portion 2, can be guided securely. Therefore, according to the spectroscopy module 1, it is possible to improve the reliability.
Abstract:
A WDM transmission apparatus to receive or relay WDM light in a WDM transmission system, includes a measuring unit configured to measure an optical level of each channel transmitted by the WDM light; an adjusting unit configured to adjust a resolution of the measuring unit; and a processing unit configured to obtain, for each channel, optical level information which represents an optical level respectively measured with a resolution corresponding to a bit rate of a transmission signal of each channel.
Abstract:
An entry slit panel for a push-broom hyperspectral camera is formed at least partly from a silicon wafer on which at least one companion sensor is fabricated, whereby the companion sensor is co-planar with the slit and detects light imaged on the panel but not on the slit. In embodiments, the companion sensor is a panchromatic sensor or a sensor that detects light outside the wavelength range of the camera. At least a region of the wafer is back-thinned to a thickness appropriate for a diffraction slit. The slit can be etched or laser cut through the thinned region, or formed between the wafer and another wafer or a conventional blade. The wafer can be back-coated or metalized to ensure its opacity across the camera's wavelength range. The companion sensor can be located relative to the slit to detect scene features immediately before or after the hyperspectral camera.
Abstract:
For high-resolution spectral volume sampling, a band-pass filter spectrally filters electromagnetic radiation from a scene to wavelengths within a specified wavelength range. A slit array is located at an image of the scene and includes a plurality of slits arranged in parallel. Each slit has a specified width and a specified spacing between slits. Each slit further transmits the electromagnetic radiation. A dispersion device disperses the transmitted electromagnetic radiation from the slit array with a specified dispersion while focusing the transmitted electromagnetic radiation onto a detector array so that each wavelength of electromagnetic radiation from each slit is focused as a unique, non-overlapping line on the detector array.
Abstract:
For achieving balance between manufacturing effort and spectrometer accuracy, a spectral decomposition device is not completely integrated into a substrate stack, but, for example, after manufacturing the substrate stack in the manufacturing process, the opportunity of compensating inaccuracies in substrate stack manufacturing is given by mounting a component with a suitable optical functional element to a window, like, e.g., an entry, exit or intermediate window of the substrate stack, to at least partially cover the respective window, wherein the optical functional element is, for example, an entry aperture, an exit aperture or also part of an optics or an optical element having a spectrally decomposing effect. The substrate stack may be manufactured on wafer level and the manufacturing tolerances in this manufacturing may be loosened, as the subsequent substrate stack-individual mounting or even window-individual mounting of the components may compensate the fluctuations which resulted in substrate stack manufacturing.
Abstract:
This disclosure describes an aperture shaped to provide a narrow beam in the horizontal plane but a wider beam in the vertical plane that will provide improved image quality in spectrometers.
Abstract:
The apparatus for scanning at least one hyper-spectral image comprises an optical system, the hyper-spectrometer and the relay module. The hyper-spectrometer is disposed apart from the optical system. The optical system can focus an optical image of a target in a focal plane thereof, where the focal plane contains a plurality of row portions of the optical image. The relay module can selectively relay one of the row portions of the optical image to the hyper-spectrometer. Moreover, a method for scanning at least one hyper-spectral image is disclosed in specification.