Abstract:
An electronically agile spectro-polarimetric imager is described in which an acousto-optic tunable spectral filter (AOTF) is located in series with an electronically tunable optical phase modulation plate such that incident radiation will pass through the modulation plate and the AOTF in sequence. This system makes it possible to perform both spectral analysis, complex polarization analysis and object discrimination at video-rates of incident radiation from complex target scenes according to the spectral content and polarization state of the radiation reflected or emitted from the objects within the scene, regardless of the polarization state of the incident radiation. Embodiments for analyzing incident radiation of various wavelengths are provided.
Abstract:
A technique for extracting the impulse response of a sample of interest includes corresponding measurements made with the sample of interest and a reference sample. At each of a series of steps in an FT-IR spectrometer, the sample of interest is illuminated with an excitation pulse of infrared radiation, acoustic signals having a time dependence o.sub.S (t) arising from the excitation pulse are captured, and a Fourier transform O.sub.S of o.sub.S (t) is computed. At each of a series of steps in the FT-IR spectrometer, the reference sample is illuminated with an excitation pulse of analytic radiation, acoustic signals having a time dependence O.sub.R (t) arising from the excitation pulse are captured, and a Fourier transform O.sub.R of o.sub.R (t) is computed. For each step, an inverse Fourier transform of the ratio O.sub.S /O.sub.R is computed to provide a series of values s(t.sub.i) for a series of times t.sub.i. These values s(t.sub.i) represent the impulse response s(t) of the sample of interest for the mix of optical frequencies for that retardation value. Interferograms are processed to provide photoacoustic spectra.
Abstract:
Provided is a polarization characteristic measuring method and apparatus for accurately measuring a polarization characteristic of fluorescence or Raman-scattered light emitted when a sample is exposed to light. The sample is exposed to excitation light radiated from a pulsed excitation light source and converted to p-polarized light by polarizer and half-wave plate, and photodetectors measure an intensity I.sub.pp of a p-polarized component and an intensity I.sub.ps of an s-polarized component of fluorescence emitted from the sample under irradiation with the excitation light. In similar fashion, the sample is exposed to the excitation light of s-polarized light and the detectors measure an intensity I.sub.sp of a p-polarized component and an intensity I.sub.ss of an s-polarized component of fluorescence emitted from the sample under irradiation. From these measured values, G factor is calculated according to the following equation:G=[(I.sub.pp .multidot.I.sub.sp)/(I.sub.ps .multidot.I.sub.ss)].sup.1/2and polarization response correction is effected based on this G factor to obtain the polarization characteristic of fluorescence.
Abstract:
Digital signal proceessing (DSP) techiques for performing multiple modulation measurements with a polarization photoelastic modulator (PEM) in a step-scanning FT-IR spectrometer. The frequency and phase of the PEM drive signal are extracted from the digitized data collected for the actual measurement. This can then be used to perform the desired analysis of the polarization signals (e.g., CD,LD, DIRLD). This is accomplished by successively refining an initial estimate of the PEM frequency (typically starting at the nominal PEM frequency .omega..sub.0, or at the value determined from the previous step). This is done by using the current estimate of the PEM frequency to compute a phase error, and then using the computed phase error to refine the estimate of the PEM frequency. The phase errors are computed using different sets of samples in the sampling interval.
Abstract:
A method of, and system for, applying light beam producing systems such as ellipsometers, polarimeters, polarized light reflectance and functionally similar systems, such that a beam of light produced thereby is caused to be incident upon a process element at an angle in excess of an associated Brewster angle while enabling the production of a signal sufficiently sensitive to changes in process element parameters, for use in "real-time" process element process monitoring and control, is disclosed. In addition a process element processing system and electron beam producing system and light beam producing system combination system is taught, wherein the electron beam producing and light beam producing systems are mounted to the process element processing system, (typically a (MBE) system), by input and output interface systems present at a location appropriate for conventional Reflection High Energy Electron Diffraction (RHEED) systems.
Abstract:
In FT-DIRLD (Dynamic Infra Red Linear Dichroism) apparatus partly represented in FIG. 1, units 100-105, responding to interferometer output IB (indicated elsewhere), cause unit 106 to yield an interferogram combining static and dynamic dichroism interferograms. Reference signals respectively in phase and quadrature with cyclic sample strain are derived from rheometer 102. At each OPD point of predetermined uninterrupted scans, controller 108 routes simultaneously a data point of the combined interferogram and the reference signals to respective channels of multiplexer 107. A microprocessor (shown elsewhere) subsequently performs a best-fit-to-an ellipse sorting of the data and for each OPD derives: A) the value of the interferogram unaffected by sample modulation; B) the corresponding in phase term; and C) the corresponding in quadrature term; furthermore, from the A, B,C data-point series it generates the interferogram of each series and transforms it into a spectrum. DIRLD analysis is achieved asynchronously and in continuous fast scanning.
Abstract:
The polarization interferometer comprises a source of light (1), a collimator (2), a first polarizing means (3), a double-refractive means (4,5,6) and a second polarizing means (7) which polarizes the light emerging from the double-refractive means (4,5,6) and directs it to a photon detector (8). The double-refractive means (4,5,6) consists of two optical wedges (5,6) displaceable along those lateral surfaces which face each other, said wedges complementing each other to a right parallelepiped, and of a double-refractive, plane-parallel plate (4) serving as a compensator. The optical axis of the compensator (4) is twisted in a plane perpendicular to the light beam by a finite angle relative to that of the two wedges (5,6), the optical axes of the two wedges (5,6) coinciding with each other. The optical axes of the two polarizing means (3,7) are arranged perpendicularly or parallely to each other and are aligned non-parallely to the axes of the two wedges (5,6) of the double-refractive means (4,5,6).
Abstract:
An acousto-optic spectrometer/polarimeter for analyzing an incident broad-band beam including an acousto-optic tunable filter (AOTF) for separating the incident broad-band beam into a diffracted extraordinary narrow-band beam, a diffracted ordinary narrow-band beam, and at least one undiffracted broad-band beam; first, second and third detectors respectively positioned to respectfully receive at least a portion of the diffracted extraordinary narrow-band beam, the diffracted ordinary narrow broad-band beam and the at least one undiffracted broad-band beam, and to respectively provide first, second and third signals based thereon; a subtracter for providing a polarimeter output by taking the difference between the first and the second signals; and an adder for providing a spectrometer output by adding the first and the second signals. The acousto-optic spectrometer/polarimeter according to the present invention allows broad-band imaging, spectroscopy and polarimetry to be performed simultaneously and through the same optical aperture.
Abstract:
A method and device for detecting dichroic and/or birefringent narrow spectral features in a sample is described. The method includes the steps of providing a beam of light having an optical frequency bandwidth which is narrow compared to the width of the narrow spectral feature and having a center frequency .omega..sub.c which lies near the narrow spectral feature, polarization phase modulating a beam of light with a single RF frequency to provide a pure FM spectrum having upper and lower sidebands in which either the carrier and sidebands have been polarized with respect to one another, exposing the sample containing the narrow spectral feature to the polarized modulated light so that the FM sidebands probe the narrow spectral feature, polarization analyzing and then photodetecting the light emerging from the sample to detect a RF beat at the specific RF frequency used for the polarization phase modulation, and electronically monitoring the amplitude of the RF beat signal to indicate the strength of the narrow spectral feature. The device includes a polarization phase modulator and a polarization analyzer positioned on opposite sides of the sample. In a preferred embodiment the polarization phase modulator produces a frequency modulated optical spectrum with the sidebands polarized precisely orthogonal to the carrier.
Abstract:
A light frequency standard for use as an optical clock is disclosed that is improved by optical pumping. Optical pumping is utilized to change the ground states of the atomic vapor from transition-forbidden to transition-allowed ground states involved in two-photon absorption process. Using an optical pump creates a stronger absorption line signal used for locking the laser to an absolute frequency. An optical spectrometer based upon two-photon absorption is disclosed that is improved by optical pumping, utilizing two optical pumps. The first optical pump provides photons that may combine with probe light for two-photon absorption, but it also depletes absorbing atoms that are in ground states. The second optical pump replenishes the supply of absorbing atoms into ground states allowing two-photon absorption between the first optical pump and the probe light. Two-photon absorption between the second pump light and the probe light is forbidden due to energy mismatch.