Abstract:
An ultraviolet light generation target includes a light emitting layer. The light emitting layer contains a YPO4 crystal to which at least scandium (Sc) is added, and receives an electron beam to generate ultraviolet light. Further, a method of manufacturing the ultraviolet light generation target includes a first step of preparing a mixture containing yttrium (Y) oxide, Sc oxide, phosphoric acid, and a liquid, a second step of evaporating the liquid, and a third step of firing the mixture.
Abstract:
The present invention generally relates to a method for forming a light extraction layer comprising nanostructures, the method comprising: providing a substrate, the substrate being at least partially transparent to UV light; forming a non-aqueous precursor solution comprising fluorine and an alkaline earth metal to form alkaline earth metal difluoride particles; applying the precursor solution on at least a first side of the substrate; drying the substrate at a first temperature for a first period of time; and baking the substrate at a second temperature, higher than the first temperature, for a second period of time, thereby forming a light extraction nanostructure layer comprising alkaline earth metal difluoride nanostructures on the substrate. The present invention also relates to a light extraction structure and to a UV lamp comprising such an extraction structure.
Abstract:
A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer, disposed on the substrate, for generating ultraviolet light in response to an electron beam. The light-emitting layer includes a powdery or granular oxide crystal containing Lu and Si doped with an activator (e.g., Pr:LPS and Pr:LSO crystals).
Abstract:
The present invention relates to a field emission lighting arrangement, comprising an anode structure at least partly covered by a phosphor layer, an evacuated envelope inside of which an anode structure is arranged, and a field emission cathode, wherein the field emission lighting arrangement is configured to receive a drive signal for powering the field emission lighting arrangement and to sequentially activate selected portions of the phosphor layer for emitting light. The same control regime may be applied to an arrangement comprising a plurality of field emission cathodes and a single field emission anode. Advantages with the invention includes increase lifetime of the field emission lighting arrangement.
Abstract:
A target for ultraviolet light generation comprises a substrate adapted to transmit ultraviolet light therethrough and a light-emitting layer disposed on the substrate and generating ultraviolet light in response to an electron beam. The light-emitting layer includes a polycrystalline film constituted by an oxide polycrystal containing Lu and Si doped with an activator or a polycrystalline film constituted by a rare-earth-containing aluminum garnet polycrystal doped with an activator.
Abstract:
The present invention relates to a method for manufacturing a plurality of nanostructures comprising the steps of providing a plurality of protruding base structures (104) arranged on a surface of a first substrate (102), providing a seed layer mixture, comprising a solvent/dispersant and a seed material, in contact with the protruding base structures, providing a second substrate arranged in parallel with the first substrate adjacent to the protruding base structures, thereby enclosing a majority of the seed layer mixture between the first and second substrates, evaporating the solvent, thereby forming a seed layer (110) comprising the seed material on the protruding base structures, removing the second substrate, providing a growth mixture, comprising a growth agent, in contact with the seed layer, and controlling the temperature of the growth mixture so that nanostructures (114) are formed on the seed layer via chemical reaction in presence of the growth agent.
Abstract:
A luminescent element including nitride includes a luminescent film and a metal layer with a metal microstructure formed on a surface of the luminescent film; wherein the luminescent film has a chemical composition: Ga1-xAlxN:yRe, wherein Re represents the rare earth element, 0≦x≦1, 0
Abstract:
The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
Abstract:
A device for lighting a room is described. The device has an envelope with a transparent face, the face having an interior surface coated with a cathodoluminescent screen and a thin, reflective, conductive, anode layer. There is a broad-beam electron gun mounted directly to feedthroughs in a base of the envelope with a heated, button-on-hairpin, cathode for emitting electrons in a broad beam towards the anode, and a power supply mounted on the feedthroughs at the base of the envelope that drives the cathode to a multi-kilovolt negative voltage. A two-prong snubber serves as an anode contact to permit the power supply to drive the anode to a voltage near ground. A method of manufacture of the anode uses a single step deposition and lacquering process followed by a metallization using a conical-spiral tungsten filament coated with aluminum by a thermal spray coating process.