Abstract:
A radio module comprises a top board (110) with all components mounted on a front surface (111) and a metal substrate on a back surface (112); a bottom board (120) with all components mounted on a front surface (121) and a metal substrate on a back surface (122), wherein the bottom board (120) is arranged so that the front surface (121) of the bottom board (120) is opposite to the front surface (111) of the top board (110); and at least one shielding board (130) provided between the top board (110) and the boom board (120) with certain vertical spacing. The top board (110), the bottom board (120), and the at least one shielding board (130) are arranged to be substantially in alignment in a vertical direction and be fastened with one another. A board-board electrical connection (140-1, 140-2) is established at least between the top board (110) and the bottom board (120).
Abstract:
An apparatus for thermal management for an electric device. In one embodiment the apparatus comprises a primary heat spreader disposed within an enclosure that contains a printed circuit board (PCB) populated with at least one electrical component, wherein the primary heat spreader is thermally conductive and wherein the interior of the enclosure is at least partially filled with an encapsulating material; a secondary heat spreader coupled to an exterior face of a first wall of the enclosure, wherein the secondary heat spreader is thermally conductive; and a thermal interface coupled between the primary head spreader and the PCB, wherein the thermal interface is thermally conductive and electrically insulating.
Abstract:
An electronic control unit includes a board, a heat-generating device, a connector, and a heatsink. The board has an insulating layer and a wiring pattern partially exposed outside the insulating layer. The heat-generating device is mounted on the board and electrically connected to the wiring pattern. The connector is located adjacent to the heat-generating device and has a connection terminal connected to the wiring pattern. The heatsink is located opposite to the board across the heat-generating device and in contact with the heat-generating device to dissipate heat of the heat-generating device. The wiring pattern has a land pattern including a mount portion and a connection portion. The heat-generating device is mounted on the mount portion. The connection terminal of the connector is connected to the connection portion.
Abstract:
In one embodiment, a modular multi-panel display system includes a mechanical support structure, and an array of LED display panels arranged in rows and columns and mounted to the mechanical support structure so as to form an integrated display. None of the LED display panels have a receiver card within the panel. A receiver box is mounted to the mechanical support. The receiver box is housed in a housing that is separate from housings of each of the LED display panels. The receiver box includes a receiver card coupled to feed data to be displayed on the integrated display to a plurality of the LED display panels. A control box is outside of the mechanical support and electrically connected to the receiver box through a data connection. A plurality of electrical connections electrically connects the receiver box with a first display panel in each row of display panels.
Abstract:
A heat dissipating module of an electronic device includes a casing, a circuit board, at least one heat generation element, and a fastening assembly. The casing includes at least one lateral plate. The at least one heat generation element is firmly fixed on the at least one lateral plate through a fixing element. After the at least one lateral plate and the circuit board are combined together through the fastening assembly, the at least one lateral plate and the circuit board pass through a reflow furnace, so that the at least one heat generation element is welded on the circuit board. The heat generated by the at least one heat generation element is transferred to the at least one lateral plate of the casing so as to be dissipated away.
Abstract:
A lighting structure for holding light-emitting-diodes (“LEDs”) of an LED light bulb, wherein said lighting structure is in a grid form with a plurality of openings therein and having one or more locations for interconnecting LED lighting components disposed on said lighting structure, wherein the grid having a number of pre-selected intersections forming the grid, and wherein a number of pre-selected intersections is in proportion with the amount of desired ventilation and the number of LEDs generating the pre-determined amount of light. The lighting structure can be made from printed-circuit-board material and the openings of the grid can be in one of the following shapes: square, rectangular, circular, and oval.
Abstract:
A method of encapsulating a panel of electronic components such as power converters reduces wasted printed circuit board area. The panel, which may include a plurality of components, may be cut into one or more individual pieces after encapsulation with the mold forming part of the finished product, e.g. providing heat sink fins or a surface mount solderable surface. Interconnection features provided along boundaries of individual circuits are exposed during the singulation process providing electrical connections to the components without wasting valuable PCB surface area. The molds may include various internal features such as registration features accurately locating the circuit board within the mold cavity, interlocking contours for structural integrity of the singulated module, contours to match component shapes and sizes enhancing heat removal from internal components and reducing the required volume of encapsulant, clearance channels providing safety agency spacing and setbacks for the interconnects. Wide cuts may be made in the molds after encapsulation reducing thermal stresses and reducing the thickness of material to be cut during subsequent singulation. External mold features can include various fin configurations for heat sinks, flat surfaces for surface mounting or soldering, etc. Blank mold panels may be machined to provide some or all of the above features in an on-demand manufacturing system. Connection adapters may be provided to use the modules in vertical or horizontal mounting positions in connector, through-hole, surface-mount solder variations. The interconnects may be plated to provide a connectorized module that may be inserted into a mating connector.
Abstract:
A printed circuit board includes a first layer stack and a second layer stack coupled to the first layer stack. The first layer stack includes a first electrically-insulating layer, a first electrically-conductive layer, and a cut-out area defining a void that extends therethrough. The first electrically-insulating layer includes a first surface and an opposite second surface. The first electrically-conductive layer is disposed on the first surface of the first electrically-insulating layer. The second layer stack includes a second electrically-insulating layer. The second electrically-insulating layer includes a first surface and an opposite second surface. One or more electrically-conductive traces are disposed on the first surface of the second electrically-insulating layer. The printed circuit board further includes a device at least partially disposed within the cut-out area. The device is electrically-coupled to one or more of the one or more electrically-conductive traces disposed on the first surface of the second electrically-insulating layer.
Abstract:
Hybrid solder for solder balls and filled paste are described. A solder ball may be formed of a droplet of higher temperature solder and a coating of lower temperature solder. This may be used with a solder paste that has an adhesive and a filler of low temperature solder particles, the filler comprising less than 80 weight percent of the paste. The solder balls and paste may be used in soldering packages for microelectronic devices. A package may be formed by applying a solder paste to a bond pad of a substrate, attaching a hybrid solder ball to each pad using the paste, and attaching the package substrate to a microelectronic substrate by reflowing the hybrid solder balls to form a hybrid solder interconnect.
Abstract:
Various embodiments may provide a circuit arrangement. The circuit arrangement may include a carrier having at least one electrically conductive line; a plurality of discrete encapsulated integrated circuits arranged on the carrier; wherein a first integrated circuit of the plurality of integrated circuits is in electrical contact with a second integrated circuit of the plurality of integrated circuits to form a first current path bypassing the carrier; and wherein the first integrated circuit of the plurality of integrated circuits is in electrical contact with the second integrated circuit of the plurality of integrated circuits to form a second current path via the at least one electrically conductive line.