Abstract:
A plasma display apparatus includes a plasma display panel (PDP), a chassis base secured on a first side to the PDP and having a driving circuit board mounted on a second side, a tower-shaped fixing unit that protrudes above the second side of the chassis base, and a back cover secured to a tower unit of the tower-shaped fixing unit to cover the driving circuit board.
Abstract:
A circuit board and a circuit apparatus using the same which can prevent displacement and film exfoliation ascribable to thermal expansion, and suppress a drop in reliability at increasing temperatures. The circuit board of the circuit apparatus includes a metal substrate having pierced holes as a core member. Protrusions are formed on the top ends of the pierced holes, and depressions are formed in the bottom ends of the pierced holes. Wiring pattern layers are formed on both sides of this metal substrate via respective insulating layers. In order to establish electrical connection between the wiring pattern layers, a conductor layer which connects the wiring pattern layers is formed through the metal substrate via the pierced holes. The conductor layer thereby establishes electrical conduction between the wiring pattern layers. Furthermore, a semiconductor chip is directly connected to the surface side of the circuit board via solder balls.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a substrate and an adhesive. The semiconductor device is electrically connected to the substrate and thermally connected to the heat spreader. The heat spreader includes a post and a base. The post extends upwardly from the base into an opening in the adhesive and an aperture in the substrate, and the base extends laterally from the post. The adhesive extends between the post and the substrate and between the base and the substrate. The assembly provides signal routing between a pad and a terminal.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The heat spreader includes a post and a base. The post extends upwardly from the base into an opening in the adhesive, and the base extends laterally from the post. The adhesive extends between the post and the conductive trace and between the base and the conductive trace. The conductive trace provides signal routing between a pad and a terminal.
Abstract:
An electronic assembly includes a thermally-conductive substrate, a circuit board device and a plurality of light emitting diode (LED) devices. The circuit board device is disposed on the thermally-conductive substrate. The LED devices are disposed on the thermally-conductive substrate. The LED device includes a plurality of electrical connection portions and at least one thermal connection portion. The electrical connection portions are electrically connected to the circuit board device. The thermal connection portion is thermally connected to the thermally-conductive substrate. The connection locations of the circuit board device connected to the electrical connection portions and the connection location of the thermally-conductive substrate connected to the thermal connection portion are at a same plane. In addition, a backlight module applying the electronic assembly is also provided.
Abstract:
A circuit device having superior mechanical strength at the interface between a circuit board and heat sink and superior efficiency for radiating heat from a circuit element to the heat sink through the circuit board. The circuit device includes the metal-based insulation board for installing the circuit element, and the heat sink, over which the insulation board is installed with a paste arranged therebetween. The insulation board has a projection arranged on the surface facing the heat sink along a peripheral portion. At least part of the projection contacts the heat sink through the paste layer.
Abstract:
Apparatuses for backlighting and manufacturing processes thereof are disclosed. There is provided a backlight module. The backlight module comprises a double-sided circuit board with thermal conducting material as one of the core layers; a plurality of light source components mounted on the first surface of the circuit board; and, a plurality of electronic components mounted on the second surface of the circuit board. The thermal conducting core layer discharges heat generated by the light source components. The circuit board has at least one window on the surface layer at the second surface to expose the thermal conducting core layer for thermal dissipation. As such, the component heights on the illuminating side of the circuit board are unified, and the reflector can be made as a smooth planar sheet to provide a more uniform backlight illumination compared to a single-side circuit board design. Further, such an arrangement reduces the complexity in manufacturing the reflector and hence the cost thereof.
Abstract:
An electronic device with enhanced heat spread. A printed circuit board is disposed in a casing and includes a first metal ground layer, a second metal ground layer, and a metal connecting portion. The first metal ground layer is opposite the second metal ground layer. The metal connecting portion is connected between the first and second metal ground layers. The second metal ground layer is connected to the casing. A chip is electrically connected to the printed circuit board and includes a die and a heat-conducting portion connected to the die and soldered with the first metal ground layer. Heat generated by the chip is conducted to the casing through the heat-conducting portion, first metal ground layer, metal connecting portion, and second metal ground layer.
Abstract:
A built-in capacitor type power feed device for an electrical component which solves the problems of the reduction in the noise margin of the power supply system accompanying the lower drive voltages of electrical components and the noise between the power supply and ground accompanying simultaneous switching waveforms, provided with a power supply for supplying power, a printed circuit board including a signal line pattern, a power bar having conductive projections provided in shapes and at positions corresponding to the shapes and positions of electrodes of the electrical component and provided outside of the printed circuit board, a ground bar provided outside of the printed circuit board, and a high dielectric layer provided at a part corresponding to the electrical component between the power bar and the ground bar, power from the power supply being fed to electrodes of the electrical component through the power bar and the ground bar.
Abstract:
A circuit assembly containing a surface mount (SM) IC package wire bonded to a substrate and configured to conduct heat from the package into a heat sink through a heat-conducting member instead of the substrate. The package contains an IC device with input/output pads on a surface thereof that are connected with leads to conductors on the substrate. The heat sink is located adjacent the package so as not to be separated from the package by the substrate. The heat-conducting member is positioned adjacent the surface of the device opposite its input/output pads, and is bonded to the device and heat sink to provide a heat path between the package and heat sink that does not pass through the substrate.