Abstract:
The color measurement instrument includes an illumination system and a sensing system. The illumination system is composed of a light emitting element and a light pipe. The light pipe has an incident surface at an illuminating end of the light emitting element and an ejected surface adjacent to a sensing platform of a sensing system. The sensing system includes a light collection device and a sensing platform for disposing a testing object. The light collection device includes an aperture stop for adjusting the shape of a light spot on a color sensor, a light collection lens set for detecting and projecting an image of a testing object on the sensing platform, a field stop for separating a light from an area, an uniform lens set for spreading the image on the field stop, and a color sensor for capturing and analyzing the color to adjust the brightness.
Abstract:
A color measuring device includes a lighting arrangement (10) for a measurement field (MF) of a measurement object (MO) to be measured, a pick-up arrangement (20) for detecting the measurement light reflected back from the measurement field and for converting it into corresponding electric signals, an electronic circuit (200) for controlling operation of the color measuring device and for processing and evaluating the electric signals, and a display (D) for displaying measurement results. The lighting arrangement (10) has a lamp ring (11) with three identical lamp groups (L1, L2, L3), mutually offset an angle of preferably 120°, each with, for example, 10 light sources (Ln) with different radiation characteristics in the form of light-emitting diodes for illuminating the measurement field (MF) from a predefined range of angles of incidence. The pick-up arrangement (20) has a digital camera (22) which creates an image of the measured measurement field (MF) made up of image pixels. The electronic circuit (200) is designed to switch the light sources (Ln) of the lamp groups (L1, L2, L3) of the lighting arrangement (10) on sequentially, and the camera (22) creates a separate image of the measurement field (MF) for every switched-on light source (Ln) and forwards the associated measurement values of the individual image pixels to the electronic circuit (200) as image data for processing and evaluation.
Abstract:
A peripheral interface device for determining the color of a surface, where the surface color may then be used to determine device position and identify objects. Embodiments provide a device capable of directing different colors of light (e.g., red, green and blue) onto a surface and measuring relative intensities of the reflected colors to determine the color of the surface. The reflection and measurement of each color may be performed separately. Alternatively, composite-colored light may be directed at the surface, which may then be filtered to extract the different colors and enable measurement of their relative intensities. As such, the device can detect regions of a given color and regions of different shades of the same color, which may then be used to determine the position of the device and/or identify an object.
Abstract:
In order to measure a measurement target on a PCB, height information of the PCB is acquired by using a first image photographed by illuminating a grating pattern light onto the PCB. Then, a first area protruding on the PCB by greater than a reference height is determined as the measurement target by using the height information. Thereafter, color information of the PCB is acquired by using a second image photographed by illuminating light onto the PCB. Then, the first color information of the first area determined as the measurement target out of the color information of the PCB is set as reference color information. Thereafter, the reference color information is compared with color information of an area except for the first area to judge whether the measurement target is formed in the area except for the first area. Thus, the measurement target may be accurately measured.
Abstract:
The system provides for controlling color reproduction of input color image data in a network having nodes (or sites). The system distributes the input color image data from one of the nodes to other nodes, and provides data structures in the network. The system has means for providing color calibration data at each node characterizing output colors (colorants) of the rendering device of the node, and means for producing at each node, responsive to the color calibration data of the rendering device of the node, information for transforming the input color image data into output color image data at the rendering device of the node. The rendering device of each node renders a color reproduction responsive to the output color image data, wherein colors displayed in the reproduction at the rendering device of each node appear substantially the same within the output colors attainable by the rendering devices.
Abstract:
An apparatus includes a three dimensional array of light receptors disposed within a substrate having a light receiving surface, where light receptors disposed closer to the light receiving surface are responsive to light having shorter wavelengths than light receptors disposed further from the light receiving surface, and where each light receptor is configured to output a binary value and to change state between an off-state and an on-state by the absorption of at least one photon.
Abstract:
The present disclosure is directed to imaging device, systems, and methods for collecting optical data for use with spectrometers. An imaging device configured in accordance with one aspect of the disclosure includes a lens configured to introduce light into the imaging device along an optical path, and an image sensor spaced apart from the lens and configured to receive at least a portion of the light along the optical path. The imaging device further includes a filter assembly positioned between the lens and the image sensor, and a reflector or mirror carried by the filter assembly. The filter assembly is configured to move the reflector between first and second positions. In the first position the reflector is at least partially aligned with the optical path and reflects at least a portion of the light to a corresponding light input for a spectrometer. In the second position the reflector is positioned outside of the optical path.
Abstract:
The system provides for controlling color reproduction of input color image data in a network having nodes (or sites). The system distributes the input color image data from one of the nodes to other nodes, and provides data structures in the network. The system has means for providing color calibration data at each node characterizing output colors (colorants) of the rendering device of the node, and means for producing at each node, responsive to the color calibration data of the rendering device of the node, information for transforming the input color image data into output color image data at the rendering device of the node. The rendering device of each node renders a color reproduction responsive to the output color image data, wherein colors displayed in the reproduction at the rendering device of each node appear substantially the same within the output colors attainable by the rendering devices.
Abstract:
A method and an arrangement for testing the quality of multicolor patterned surfaces with an n-channel imaging sensor such as a color camera or an imaging spectrometer. The method determines from the captured images the deviations of the color/spectral statistics and of the image sharpness with respect to references and, before an assessment, converts at least one of the deviations or threshold values using a transformation which emulates the genetically and/or culturally specific perception of the targeted customer groups. The method further allows a quality produced to be associated with a genetically and/or culturally specific group of customers who accept this quality in terms of their perception of multicolor patterned surfaces.
Abstract:
A color calibration system in accordance with a preferred embodiment of the present invention comprises a display device provided with a color sensor for detecting a color temperature and illuminance of ambient light, a microcomputer, and a colorimeter for performing colorimetry on a display screen of the display device from the outside. The microcomputer calculates a target value by using a preset calculation equation and a detection result on the ambient light detected by the color sensor. Then, the microcomputer automatically performs color calibration of the display device so that a colorimetry result obtained by the colorimeter may agree with the target value.