Abstract:
A system and method of determining if a surface contains print or is a screen of a mobile device is provided. The method is comprised of the steps of: acquiring a spectral wavelength signature of the surface; comparing the spectral wavelength signature of the surface to RGB triple-peak emission spectra; scanning the surface with an image-based scanner in non-illumination mode based upon the spectral wavelength signature of the surface corresponding to the RGB triple-peak emission spectra, and scanning the surface with an image-based scanner in illumination mode based upon the spectral wavelength signature of the surface not corresponding to the RGB triple-peak emission spectra.
Abstract:
An unevenness inspection apparatus includes circuitry that is configured to obtain a pickup image of a test object and modify a chroma value of a pixel in the pickup image to correct a gain of the pickup image associated with the pixel for generating a color unevenness inspection image. The circuitry is configured to generate a luminance unevenness inspection image based on the pickup image and calculate an evaluation parameter using both of the color unevenness inspection image and the luminance unevenness inspection image. The circuitry is configured to perform unevenness inspection using the calculated evaluation parameter, which is calculated based on unevenness visibility for both color and luminance.
Abstract:
Color calibration of color image rendering devices, such as large color displays, which operate by either projection or emission of images, utilize internal color measurement instrument or external color measurement modules locatable on a wall or speaker. A dual use camera is provided for a portable or laptop computer, or a cellular phone, handset, personal digital assistant or other handheld device with a digital camera, in which one of the camera or a display is movable with respect to the other to enable the camera in a first mode to capture images of the display for enabling calibration of the display, and in a second mode for capturing image other than of the display. The displays may represent rendering devices for enabling virtual proofing in a network, or may be part of stand-alone systems and apparatuses for color calibration. Improved calibration is also provided for sensing and correcting for non-uniformities of rendering devices, such as color displays, printer, presses, or other color image rendering device.
Abstract:
An RGB video signal is generated by illuminating an object with light from a first monitor and capturing an image of the object with a camera. The second monitor holds a profile representing the correspondence relationship between R, G, andB values generated by displaying an image including values of R, G, and B on a reference monitor and capturing an image of the displayed image with the camera and X, Y, and Z values which are measurements of tristimulus values of the displayed image in the XYZ color space. The second monitor converts the first R, G, and B values of the video signal to first X, Y, and Z values based on the profile, and converts the first X, Y, and Z values to second R, G, and B values appropriate for the second monitor to display an image of the object on a display unit.
Abstract:
Provided herein is a three-dimensional shape measurement apparatus capable of measuring a shape of a measurement object using an interferometer and color information of the measurement object, the apparatus including a light source for emitting a light; a light divider for reflecting the light emitted from the light source or transmitting a light reflected by the measurement object; a lens unit for focusing the light reflected by the light divider Onto the measurement object; a light detector for detecting the light reflected from the measurement object; and a light adjuster arranged on a light path between the light source and the light divider, and configured to interrupt the light being emitted from a central area of the light source to reduce interference of light occurring in the lens unit.
Abstract:
Disclosed examples of optical systems having a plurality of light sources with each source having a different spectral outputs may be calibrated by measuring a spectral characteristic of the combined light with two measurements, e.g., one from a colorimeter and one from a sensor included in the system. Accordingly, one can determine a transform function in response to the two measures that models a feedback response of the optical system for each of a plurality of the inputs that would cause the optical system to generate radiant energy within a predetermined range of a spectrum. In order to calibrate the optical system, the transform function is programmed in the optical system to enable the optical system to transform an input to the optical system to a plurality of unique control signals each for controlling a respective light source of the plurality of light sources.
Abstract:
A method for controlling a camera for color calibration of multi-displays including: acquiring a first image of data displayed on the multi-displays by photographing the multi-displays with the camera; analyzing color of the data displayed on at least one individual display from among the multi-displays using the acquired first image; determining image capture settings suitable for the color calibration of the multi-displays, based on a result of the analyzing; adjusting the image capture settings of the camera in accordance with the determined image capture settings; acquiring a second image of the data displayed on the multi-displays by photographing the multi-displays with the camera using the adjusted image capture settings of the camera; and performing color calibration of the multi-displays based on the second image.
Abstract:
A method of manufacturing an EL display device having a light emitting part, in which a plurality of pixels are arrayed, and a thin-film transistor array device to control light emission of the light emitting part, includes a luminance measurement step of obtaining luminance data of pixel, with the light emitting part being lit. The luminance measurement step includes a first luminance measurement step and a second luminance measurement step. In the first luminance measurement step, a first imaging apparatus obtains luminance data by measuring light emission of the each pixel. The first apparatus has a resolution corresponding to that of the pixels of the light emitting part. In the second luminance measurement step after the first step, a second imaging apparatus measures light emission of a plurality of the pixels to correct the luminance data of the each pixel obtained in the first luminance measurement step. The second imaging apparatus is lower in resolution than the first imaging apparatus.
Abstract:
A method for measuring the uniform diffuse reflectance ROBJ(λ) at least at one point on an object (30) using a device (10) including a unit (11) capable of emitting colour illuminants expressed in the form of luminous flux and an electronic colour image sensor (12). The present invention also relates to a device (10) including a unit (11) for emitting colour illuminants expressed as luminous flux of colours and an electronic colour image sensor (12), for measuring the uniform diffuse reflectance ROBJ(λ) at least at one point on an object (30) placed in a zone located opposite and substantially perpendicular to the unit (11) capable of emitting colours and located in the field of vision of the electronic colour image sensor (12) and being subjected to an external illuminant expressed as a constant and unknown external environmental luminous flux (40) denoted Iext(λ).
Abstract:
A system for monitoring LED displays on electronic equipments using optical fiber as light transmission medium comprising: (a) a plurality of LED displays on electronic equipments indicating operation status of the electronic equipments, (b) a plurality of optical light concentrator unit, for collecting light emitted by the LED displays using optical fiber as light transmission medium, (c) a plurality of LED Display Monitors for determining the operation status of the LED displays that reflect the operation status of the electronic equipments, (c) an equipment LED display monitoring software installed and executed in a computer system for comparing the operation status of the LED displays with a predetermined operation status stored in the computer system and providing audio, visual, or electronic messaging alerts if any abnormality occurs, and (d) a communication link between the LED Display Monitors and the computer system.