Abstract:
A navigational control system for an autonomous robot includes a transmitter subsystem having a stationary emitter for emitting at least one signal. An autonomous robot operating within a working area utilizes a receiving subsystem to detect the emitted signal. The receiver subsystem has a receiver for detecting the emitted signal emitted by the emitter and a processor for determining a relative location of the robot within the working area upon the receiver detecting the signal.
Abstract:
A hull cleaning robot, in accordance with an embodiment of the present technology, includes a robot body and a drive module within the robot body for maneuvering the robot about a hull. The drive module includes a drive element for holding the robot on the hull as the robot maneuvers about the hull. The drive element includes a cleaning function for cleaning the hull of a vessel.
Abstract:
The present application provides a signal guided cleaning device and a signal guided cleaning system thereof. The signal guided cleaning system includes a signal emitter and a signal guided cleaning device. The signal emitter is used to emit at least one first emission signal. And the signal guided cleaning device includes a body, at least one mobile element, at least one driver, and a controlling unit. Each first signal receiver received the first emission signal in receiving range and provides a first reception instruction. Each mobile element connects with the corresponding driver. Controlling unit connects with the first signal receivers and drivers, provides a corresponding first controlling instruction according to the received first reception instruction, and drives the corresponding drivers so as to make the mobile elements drive the body forward an emitting direction of the first emission signal.
Abstract:
An autonomous mobile robot system for bounded areas including a navigation beacon and an autonomous coverage robot. The navigation beacon has a gateway beacon emitter arranged to transmit a gateway marking emission with the navigation beacon disposed within a gateway between the first bounded area and an adjacent second bounded area. The autonomous coverage robot includes a beacon emission sensor responsive to the beacon emission, and a drive system configured to maneuver the robot about the first bounded area in a cleaning mode in which the robot is redirected in response to detecting the gateway marking emission. The drive system is also configured to maneuver the robot through the gateway into the second bounded area in a migration mode.
Abstract:
A robot cleaner includes a main body, a moving device to move the main body, and a control unit at the main body to recognize an area requiring cleaning. When the control unit recognizes the area requiring cleaning while in a standby state of the robot cleaner, the control unit controls the moving device so that the main body moves from a standby position to the area requiring cleaning to clean the area based on the control unit recognizing the area requiring cleaning.
Abstract:
A cleaner includes at least one cleaning component, a pump module, a driving module and a control system. The at least one cleaning component and the plate delimit at least one space. The pump module is connected to the at least one space to pump air out of the at least a space to form a negative air pressure in the at least one space so that the cleaner is sucked on the plate. The driving module is connected to the at least a cleaning component to drive the at least a cleaning component. The control system is coupled to the pump module and the driving module and controls the driving module to cause the at least one driven cleaning component to make a movement on the plate.
Abstract:
A robot positioning system having a camera, a processing unit and at least a first line laser. The first line laser is arranged to illuminate a space by projecting vertical laser beams within field of view of the camera. The camera is arranged to record a picture of the space illuminated by the vertical laser beams, and the processing unit is arranged to extract, from the recorded picture, image data representing a line formed by the vertical laser beams being reflected against objects located within the space. The processing unit is further arranged to create, from the extracted line, a representation of the illuminated space along the projected laser lines, in respect of which the robot is positioned. Methods of positioning a robot are also provided.
Abstract:
A robot cleaner includes a case, a suction device provided in the case, a suction nozzle for sucking dust from a floor by driving of the suction device, a dust collection device for collecting foreign substances contained in the air sucked via the suction nozzle, a driving unit for allowing the case to drive automatically, a controller for controlling the driving of the suction device and the driving unit, and for generating cleaning history information comprising map information on a cleaning area and moving path information, a memory unit for storing the cleaning history information; and a wireless communication module provided in the case to transmit the cleaning history information to the external terminal, when the external terminal asks the cleaning history information.
Abstract:
A method and apparatus for reckoning a position of a moving robot using dead-reckoning and range sensing. The method includes performing dead-reckoning to determine a variation state in accordance with motion of the moving robot, calculating an absolute position of the moving robot by sensing a distance between the moving robot and at least one fixed position, predicting an optimized current position of the moving robot using the variation state and the absolute position, determining whether the optimized current position is within a specified effective area, and correcting the optimized current position in accordance with the determined result.
Abstract:
Systems, methods, and other embodiments associated with swarm management are described. One example system comprises a communication component configured to establish a communication link with at least one element, where the at least one element is part of a swarm. The example system also comprises a management component configured to manage performance of a task list by the swarm through the communication link.