Abstract:
A three-dimensional coordinate measuring apparatus has a first and second incident angle adjusting sections for adjusting the attitude of the object in the directions of first and second neutral axes, respectively, to adjust the incident angle of the beam projected on the object from an imaging optical system relative to the object so that first and second stereoscopic images of the object can be formed, a matching process section for searching for corresponding points corresponding to measurement points in first and second search directions generally perpendicular to the first and second neutral axes, respectively, in the first and second stereoscopic images, and a shape measuring section for obtaining three-dimensional coordinate data of the object based on the relation between the measurement points and the corresponding points in the first and second stereoscopic images.
Abstract:
A charged particle beam device is described. The device includes an emitter unit including an emitter tip; a voltage supply unit adapted for providing a stable voltage to generate a stable extraction field at the emitter tip; a pulsed voltage supply member adapted for providing a pulsed voltage to generate a pulsed extraction field on top of the stable extraction field; a measuring unit for measuring an emitter characteristic; and a control unit adapted for receiving a signal from the measuring unit and for control of the pulsed voltage supply member.
Abstract:
One embodiment relates to a method of behind-the-lens dark-field imaging using a scanning electron microscope apparatus. An incident beam is focused onto a specimen surface using an immersion objective lens, and the incident beam is deflected so as to scan the incident electron beam over a field of view of the specimen surface. A secondary electron beam is detected using a segmented detector to obtain a set of pixel data for each segment of the detector. Scan-dependent movement of the secondary electron beam over the segmented detector is compensated for by processing using a dynamic centering algorithm to generate a set of virtual pixel data for each segment of a virtual detector. At least one set of the virtual pixel data is used to generate a dark field image. Other embodiments, aspects, and features are also disclosed.
Abstract:
The edges of the reticle are detected with respect to the microstructured patterns exposed by the stepper, and the shapes of the microstructured patterns at the surface and at the bottom of the photoresist are detected. The microstructured patterns are evaluated by calculating, and displaying on the screen, the dislocation vector that represents the relationship in position between the detected patterns on the surface and at the bottom of the photoresist. Furthermore, dislocation vectors between the microstructured patterns at multiple positions in a single-chip or single-shot area or on one wafer are likewise calculated, then the sizes and distribution status of the dislocation vectors at each such position are categorized as characteristic quantities, and the corresponding tendencies are analyzed. Thus, stepper or wafer abnormality is detected.
Abstract:
The present invention relates to atom probe evaporation processes. For example, certain aspects are directed toward methods for controlling an evaporation process in an atom probe that includes initiating the atom probe evaporation process and monitoring a parameter associated with material being evaporated from a specimen. The method can further include controlling at least one characteristic of the atom probe evaporation process to attain a desired evaporation rate or characteristic. In selected embodiments, monitoring a parameter associated with material being evaporated can include monitoring an evaporation rate, mass-to-charge ratios of evaporated ions, a mass resolution, a composition of material being evaporated, and/or the like. In certain embodiments, controlling at least one characteristic can include controlling a pulse energy, a pulse frequency, a bias energy, and/or the like. In other embodiments, various portions of the above process can be computer implemented.
Abstract:
A method of analysis using an energy loss spectrometer and a transmission electron microscope equipped with the energy loss spectrometer. The spectrometer has a CCD camera for recording plural spectra as one photoelectric device image and a controller for batch reading in images from the camera, converting the positions of the pixels forming the images, and splitting each image into plural spectra. This permits improvement of the processing speed of the spectrometer.
Abstract:
A defect review method and device of the invention solves the previous problem of a long inspection time that is caused by the increase of a process-margin-narrow pattern as a result of the size reduction of a semiconductor device. With the method and device of the invention, an SEM (Scanning Electron Microscope) image is derived by capturing an image of a process-margin-narrow pattern portion extracted based on lithography simulation with image-capturing conditions of a relatively low resolution. The resulting SEM image is compared with CAD (Computer Aided Design) data for extraction of any abnormal section. An image of the area extracted as being abnormal is captured again, and the resulting high-resolution SEM image is compared again with the CAD data for defect classification based on the feature amount of the image, e.g., shape deformation. The abnormal section is then measured in dimension at a position preset for the classification result so that the time taken for inspection can be prevented from increasing.
Abstract:
The edges of the reticle are detected with respect to the microstructured patterns exposed by the stepper, and the shapes of the microstructured patterns at the surface and at the bottom of the photoresist are detected. The microstructured patterns are evaluated by calculating, and displaying on the screen, the dislocation vector that represents the relationship in position between the detected patterns on the surface and at the bottom of the photoresist. Furthermore, dislocation vectors between the microstructured patterns at multiple positions in a single-chip or single-shot area or on one wafer are likewise calculated, then the sizes and distribution status of the dislocation vectors at each such position are categorized as characteristic quantities, and the corresponding tendencies are analyzed. Thus, stepper or wafer abnormality is detected.
Abstract:
On the basis of a displacement of the field of view before and after a deflection of a charged particle beam, extracted from a first specimen image, including a displacement of the field of view recorded by causing a charged particle beam to deflect by a predetermined amount by a beam deflector in an image in which a specimen image is captured at a first magnification calibrated by using a specimen enlarged image of a specimen as a magnification standard, and also a displacement of the field of view before and after a deflection of the charged particle beam, extracted from a second specimen image, including a displacement of the field of view recorded by causing a charged particle beam to deflect by the predetermined amount by the beam deflector in an image in which a specimen image is captured at a second magnification, the second magnification is calibrated.
Abstract:
To provide a charged particle system capable of facilitating comparison between an actual pattern and an ideal pattern using not only two-dimensional CAD data but also three-dimensional CAD data. According to the present invention, using information about the angle of irradiation of a sample with a charged particle beam, a two-dimensional display of an ideal pattern (design data, such as CAD data, for example) is converted into a three-dimensional display, and the three-dimensional ideal pattern is displayed with an observation image. If the three-dimensional ideal pattern is superimposed on the observation image, comparison thereof can be easily carried out. Examples of the ideal pattern include a circuit pattern (CAD data) based on semiconductor design information, an exposure mask pattern based on an exposure mask used for exposure of a semiconductor wafer, and an exposure simulation pattern based on exposure simulation based on the exposure mask and an exposure condition can be used, and at least one of these patterns is displayed three-dimensionally.