Abstract:
A method of preparing a sample for transmission electron microscopy (TEM) analysis is provided. The method comprises cleaning the sample to remove a redeposition layer, imaging the cleaned sample and identifying a location of a region of interest within the sample, and removing material from the sample, based on the identified location of the region of interest within the sample. Advantageously, the sample thinning step is performed based on a detected location of a region of interest. This thinning step involves removal of uneven surfaces (the “lamella roof”) and thinning the remaining bulk substrate to remove redundant material, so that the silicon substrate volume between the surface of the sample and the region of interest has a defined thickness.
Abstract:
The invention relates to method of milling and imaging a sample. The method comprises the step of providing an imaging system, as well as a milling beam source. The method comprises the steps of milling, using a milling beam from said milling beam source, a sample to remove a layer of the sample; and imaging, using said imaging system, an exposed surface of the sample. As defined herein, the method further comprises the step of determining a relative position of said sample, and using said determined relative position of said sample in said milling step for positioning said sample relative to said milling beam. The relative position of said sample can be a working distance with respect to the imaging system, which can be determined by means of an autofocus procedure.
Abstract:
There is provided a scanning transmission electron microscope capable of producing plural types of STEM (scanning transmission electron microscopy) images using a single detector. The electron microscope (100) has an electron source (10) emitting an electron beam, a scanning deflector (13) for scanning the beam over a sample (S), an objective lens (14) for focusing the beam, an imager (22) placed at a back focal plane of the objective lens (14) or at a plane conjugate with the back focal plane, and a scanned image generator (40) for generating scanned images on the basis of images captured by the imager. The scanned image generator (40) operates to form electron diffraction patterns from the electron beam passing through positions on the sample by the scanning of the electron beam, to capture the electron diffraction patterns by the imager so that plural images are produced, to integrate the intensity of each pixel over an integration region that is set based on the size of an image of a transmitted wave in a respective one of the produced images for each of the produced images such that the signal intensity at each position on the sample is found, and to generate the scanned images on the basis of the signal intensities at the positions on the sample.
Abstract:
The image processing device has: a scanning direction decision unit which divides an captured image into a plurality of scanning regions and deciding a scanning direction of each scanning region based on a pattern edge captured in each scanning region in the captured image, a scanning order decision unit which performs a raster scan per pixel constituting each scanning region such that the scanning direction of each of the decided scanning region is directed to a horizontal direction of the raster scan, and a scanning image acquisition unit which acquires a scanning image by capturing each scanning region by the scanning-electron-microscope based on the decided scanning order.
Abstract:
For scanning electron beams and measuring overlay misalignment between an upper layer pattern and a lower layer pattern with high precision, electron beams are scanned over a region including a first pattern and a second pattern of a sample, the sample having the lower layer pattern (the first pattern) and the upper layer pattern (the second pattern) formed in a step after a step of forming the first pattern. The electron beams are scanned such that scan directions and scan sequences of the electron beams become axial symmetrical or point-symmetrical in a plurality of pattern position measurement regions defined within the scan region for the electron beams, thereby reducing measurement errors resulting from the asymmetry of electric charge.
Abstract:
The present disclosure relates to a probe capable of electrochemical and Raman spectroscopic monitoring wherein a Raman-active gold microshell having conductivity is attached to the tip of a glass microcapillary tube in which a conductive material is coated on an inner wall thereof by electroless plating. By coupling the probe with a system capable of moving the probe, the activities of various catalyst materials can be detected quickly and information of intermediate products moving from and adsorbed on the surface can be provided.
Abstract:
A focused ion beam system includes a gas field ion source which generates gas ions, an ion gun unit which accelerates the gas ions and radiates the gas ions as an ion beam, a beam optical system which includes at least a focusing lens electrode and radiates the ion beam onto a sample, and an image acquiring mechanism which acquires an FIM image of a tip of an emitter based on the ion beam. The image acquiring mechanism includes an alignment electrode which is disposed between the ion gun unit and the focusing lens electrode and adjusts a radiation direction of the ion beam, an alignment control unit which applies an alignment voltage to the alignment electrode, and an image processing unit which combines a plurality of FIM images acquired when applying different alignment voltages to generate one composite FIM image.
Abstract:
The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface.
Abstract:
The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface.
Abstract:
A method and system for the imaging and localization of fluorescent markers such as fluorescent proteins or quantum dots within biological samples is disclosed. The use of recombinant genetics technology to insert “reporter” genes into many species is well established. In particular, green fluorescent proteins (GFPs) and their genetically-modified variants ranging from blue to yellow, are easily spliced into many genomes at the sites of genes of interest (GoIs), where the GFPs are expressed with no apparent effect on the functioning of the proteins of interest (PoIs) coded for by the GoIs. One goal of biologists is more precise localization of PoIs within cells. The invention is a method and system for enabling more rapid and precise PoI localization using charged particle beam-induced damage to GFPs. Multiple embodiments of systems for implementing the method are presented, along with an image processing method relatively immune to high statistical noise levels.