Abstract:
[Subject Matter] To provide a method for manufacturing a wiring substrate where rigidity is enhanced in an insulative portion made by oxidizing aluminum.[Solution(s)] Aluminum oxide insulative portion 24 is formed on aluminum plate 20 as shown in FIG. 1(A) through anodic oxidation (FIG. 1(C)). Then, holes (nano-holes) (24h) in aluminum oxide 24 are filled with resin 30 (FIG. 1(E)). Accordingly, the rigidity (strength) of insulative portion 24 will be enhanced and cracking will not occur during heat cycles. Also, the insulation reliability of aluminum oxide will increase, and short circuiting may be prevented at through holes 26 (aluminum portions) separated by aluminum oxide 24.
Abstract:
A printed circuit board of the present invention includes a base body, a through-hole that penetrates through the base body in the thickness direction, and a through-hole conductor that covers an inner wall of the through-hole. The base body has a fiber layer including a plurality of glass fibers and a resin that covers the plurality of glass fibers. The glass fibers have a groove-shaped concavity on a surface exposed to the inner wall of the through-hole. The concavity is filled with a part of the through-hole conductor.
Abstract:
The invention relates to a prepreg, obtained by impregnating a base material with an epoxy resin composition containing an epoxy resin (A), a curing agent (B), an accelerator (C), a phenoxy resin (D), and an inorganic filler (E) and semi-hardening the impregnated material, wherein the inorganic filler (E) has an average particle diameter of 3 μm or less. When a circuit with a narrow wire distance is formed on a surface of a insulator substrate composed of such a prepreg by using a method of forming the circuit by plating process, an amount of the plating remaining on the insulator substrate surface at the circuit contour periphery can be reduced. As a result, it leads to stabilization of inter-circuit insulation resistance and increase in a yield during production of printed wiring boards.
Abstract:
A multilayer printed wiring board (11) is composed of a plurality of printed wiring boards (21a and 21b) each having wiring on its both sides, and a relaxing connection layer (15) for interconnecting the printed wiring boards (21a and 21b). The relaxing connection layer (15) contains an inorganic filler, a thermosetting resin, and a reliever for relieving internal stress. The multilayer printed wiring board (11) is prevented from warpage by making the relaxing connection layer (15) disposed inside it absorb internal stress caused by heating and cooling in a solder reflow process or other processes.
Abstract:
One or more light emitting diode diodes (LEDs) are attached to a printed circuit board. The attached LEDs are connectable with a power source via circuitry of the printed circuit board. An overmolding material is insert molded an over at least portions of the printed circuit board proximate to the LEDs to form a free standing high thermal conductivity material overmolding that covers at least portions of the printed circuit board proximate to the LEDs. The free standing high thermal conductivity material has a melting temperature greater than about 100° C. and has a thermal conductivity greater than or about 1 W/m·K. In some embodiments, the free standing high thermal conductivity material is a thermoplastic material.
Abstract:
A microelectronic device mounting substrate includes a bond pad with a side wall and an upper surface. A dielectric first layer is disposed on the mounting substrate and a solder mask second layer is disposed on the dielectric first layer. A uniform recess is disposed through the solder mask second layer and the dielectric first layer that exposes the portion of the bond pad upper surface.
Abstract:
An enhanced mechanism for via stub elimination in printed wiring boards (PWBs) and other substrates employs laser resin activation to provide selective via plating. In one embodiment, the resin used in insulator layers of the PWB contains spinel-based non-conductive metal oxide. Preferably, only insulator layers through which vias will pass contain the metal oxide. Those layers are registered and laser irradiated at via formation locations to break down the metal oxide and release metal nuclei. Once these layers are irradiated, all layers of the PWB or subcomposite are laid up and laminated. The resulting composite or subcomposite is subsequently drilled through and subjected to conventional PWB fabrication processes prior to electroless copper plating and subsequent copper electroplating. Because metal nuclei were released only in the via formation locations of the appropriate layers, plating occurs in the via barrels only along those layers and partially plated vias are created without stubs.
Abstract:
An electrical component includes a conductive substrate, a tin layer formed on the substrate, and a barrier coating formed on the tin layer to impede tin whisker growth. The barrier coating includes a polymer matrix, and abrasive particles that are dispersed about the matrix.
Abstract:
A wiring board having a favorable electrical reliability and in which a crack is unlikely to occur at a connection interface of via conductors even though the number of via conductors in series, which constitutes the stacked via, becomes larger than that of a conventional wiring board.
Abstract:
A method of manufacturing a circuit board includes: providing a base substrate that comprises a first electrically conductive layer that has an inner circuit pattern formed on at least one surface of the base substrate; attaching a build-up material to the base substrate to insulate the first electrically conductive layer from outside; forming one or more holes at one time in the build-up material attached to the base substrate; forming a stack by curing the build-up material in which the one or more holes are formed; and forming a second electrically conductive layer that has an outer circuit pattern formed on at least one outer surface of the stack. The method may form the holes without drilling.