Abstract:
Improved form-less electronic apparatus and methods for manufacturing the same. In one exemplary embodiment, the apparatus comprises a shape-core inductive device having a bonded-wire coil which is formed and maintained within the device without resort to a bobbin or other form(er). The absence of the bobbin simplifies the manufacture of the device, reduces its cost, and allows it to be made more compact (or alternatively additional functionality to be disposed therein). One variant utilizes a termination header for mating to a PCB or other assembly, while another totally avoids the use of the header by directly mating to the PCB. Multi-core variants and methods of manufacturing are also disclosed.
Abstract:
An electrical connector mountable on a printed circuit board. In one embodiment, the electrical connector comprises an insulative housing comprising one or more electronic components, a plurality of electrical conductors in signal communication with the electronic components and adapted to interface with a plug and a plurality of terminals in signal communication with the one or more electronic components. In one aspect, the plurality of terminals are adapted to interface with one or more externally mounted electronic components on the printed circuit board thereby filtering signals passing between the electrical conductors and the printed circuit board, with the externally mounted electronic components mounted within the footprint of the electrical connector. Methods of manufacture for the aforementioned electrical connector and business methods are also disclosed.
Abstract:
For automatic attachment of electronic components onto circuit boards, it is proposed that the electronic component be provided with a holding element that comprises a gripping point for a suction gripper. The holding element is designed as a clip that can be connected to the electronic component. The connecting occurs preferably by a snap-on action, wherein a form fit or positive fit is achieved by the shape of the clip, which is made of plastic. Preferably, the clip comprises a rib on the inside thereof facing the electronic component, said rib extending over at least half the periphery and engaging in a gap in the surface of the electronic component. If the electronic component is a coil, the rib, which is directed inward, can run along a helical line.
Abstract:
The present invention provides a DC-DC power converter that comprises two or more Printed Wiring Boards (PWB) mounted parallel to one another and without encapsulation. Electronic components can be mounted on both sides of each board. The open design and parallel orientation of the PWBs allow airflow over components mounted on the PWBs. The PWBs are preferable made of FR-4 with copper foils, with one thicker board being comprised of more copper layers and the other boards comprised of less copper layers. In the preferred embodiment, the power processing elements are housed in the thicker PWB, while the thinner boards house the control circuitry.
Abstract:
The disclosure provides a non-contact power receiving apparatus including a conductive pattern in a second region of a substrate not covered by a magnetic sheet. The conductive pattern includes first and second electrodes provided in a first plane parallel to a surface of the substrate and arranged in a length direction of the conductive pattern. A third electrode is formed on a second plane parallel with the first plane. A first via hole connects superposed portions of the first and third electrodes to each other, and a second via hole connects superposed portions of the second and third electrodes to each other. As a result, loops of eddy currents generated in the conductive pattern can be made to be small, whereby eddy current loss can be reduced.
Abstract:
An inductor is integrated into a multilevel wiring network of a semiconductor integrated circuit. The inductor includes a planar magnetic core and a conductive winding. The conductive winding turns around in generally spiral manner on the outside of the planar magnetic core. The conductive winding is piecewise constructed of wire segments and of VIAs. The wire segments pertain to at least two wiring planes and the VIAs are interconnecting the at least two wiring planes. Methods for such integration, and for fabricating laminated planar magnetic cores are also presented.
Abstract:
An inductor is integrated into a multilevel wiring network of a semiconductor integrated circuit. The inductor includes a planar magnetic core and a conductive winding. The conductive winding turns around in generally spiral manner on the outside of the planar magnetic core. The conductive winding is piecewise constructed of wire segments and of VIAs. The wire segments pertain to at least two wiring planes and the VIAs are interconnecting the at least two wiring planes. Methods for such integration, and for fabricating laminated planar magnetic cores are also presented.
Abstract:
A printed circuit board includes an insulating layer and a conductive metal layer attached on the insulating layer. The conductive metal layer is grounded and is configured for providing a ground path for electronic components mounted on the printed circuit board. The insulating layer includes an exposed portion free of the conductive metal layer thereon, and two pads are formed on the exposed portion of the insulating layer and are insulated from each other. An inductor is mounted on the exposed portion and is electrically connected to the two pads.
Abstract:
An electronic component to be embedded in a substrate is configured so that planar coils protected by insulators are sandwiched be a pair of magnetic layers. Ports, or openings or absent parts are provided at predetermined positions of one or both of the magnetic layers, and the predetermined positions correspond to the positions opposite to terminal electrodes of the planar coils. Accordingly, a contribution to reduction of the size and weight of electronic equipment can be made.
Abstract:
A magnetic component provides both electrical interconnectivity and mechanical support between stacked circuit boards. The magnetic component includes a bobbin structure and a magnetically permeable core. The bobbin structure includes an upper bobbin pin rail and a lower bobbin pin rail. The upper bobbin pin rail includes one or more upper bobbin pins extending from the upper bobbin pin rail. Each upper bobbin pin may be adapted for soldering onto a first circuit board. At least one lower bobbin pin extends from the lower bobbin pin rail. Each lower bobbin pin may also be adapted for soldering onto a second circuit board, forming a circuit board assembly. Each soldered connection between a bobbin pin and a circuit board may provide an electrical connection between the circuit board and the magnetic component. Each soldered connection may also provide a mechanical attachment between a printed circuit board and the magnetic component. A conductive coil is positioned on the bobbin structure and may be connected to an upper or lower bobbin pin. The core is positioned near the conductive coil for providing an electrical connection between the circuit boards through magnetic coupling.