Abstract:
A MEMS device with a first electrode, a second electrode and a third electrode is disclosed. These electrodes are disposed on a substrate in such a manner that (1) a pointing direction of the first electrode is in parallel with a normal direction of the substrate, (2) a pointing direction of the third electrode is perpendicular to the pointing direction of the first electrode, (3) the second electrode includes a sensing portion and a stationary portion, (4) the first electrode and the sensing portion are configured to define a sensing capacitor, and (5) the third electrode and the stationary portion are configured to define a reference capacitor. This arrangement facilitates the MEMS device such as a differential pressure sensor, differential barometer, differential microphone and decoupling capacitor to be miniaturized.
Abstract:
Trapped sacrificial structures and thin-film encapsulation methods that may be implemented to manufacture trapped sacrificial structures such as relative humidity sensor structures, and spacer structures that protect adjacent semiconductor structures extending above a semiconductor die substrate from being contacted by a molding tool or other semiconductor processing tool in an area of a die substrate adjacent the spacer structures.
Abstract:
Methods and structures that may be implemented in one example to co-integrate processes for thin-film encapsulation and formation of microelectronic devices and microelectromechanical systems (MEMS) such as sensors and actuators. For example, structures having varying characteristics may be fabricated using the same basic process flow by selecting among different process options or modules for use with the basic process flow in order to create the desired structure/s. Various process flow sequences as well as a variety of device design structures may be advantageously enabled by the various disclosed process flow sequences.
Abstract:
A MEMS device wherein a die of semiconductor material has a first face and a second face. A diaphragm is formed in or on the die and faces the first surface. A cap is fixed to the first face of the die and has a hole forming a fluidic path connecting the diaphragm with the outside world. A closing region, for example a support, a second cap, or another die, is fixed to the second face of the die. The closing region forms, together with the die and the cap, a stop structure configured to limit movements of the suspended region in a direction perpendicular to the first face.
Abstract:
A method for fabricating a MEMS device includes depositing and patterning a first sacrificial layer onto a silicon substrate, the first sacrificial layer being partially removed leaving a first remaining oxide. Further, the method includes depositing a conductive structure layer onto the silicon substrate, the conductive structure layer making physical contact with at least a portion of the silicon substrate. Further, a second sacrificial layer is formed on top of the conductive structure layer. Patterning and etching of the silicon substrate is performed stopping at the second sacrificial layer. Additionally, the MEMS substrate is bonded to a CMOS wafer, the CMOS wafer having formed thereupon a metal layer. An electrical connection is formed between the MEMS substrate and the metal layer.
Abstract:
One example discloses a MEMS device, including: a cavity having an internal environment; a seal isolating the internal environment from an external environment outside the MEMS device; wherein the seal is susceptible to damage in response to a calibration unsealing energy; wherein upon damage to the seal, a pathway forms which couples the internal environment to the external environment; and a calibration circuit capable of measuring the internal environment before and after damage to the seal.
Abstract:
An electronic part includes a bottom portion of a cavity that has an oscillation device, a ceiling portion so disposed that it faces the bottom portion via the cavity and having holes, a shielding portion that is disposed in the cavity and between the bottom portion of the cavity and the ceiling portion and covers the holes in a plan view viewed in the direction in which the bottom portion of the cavity and the ceiling portion are arranged, and sealing portions that are connected to both the ceiling portion and the shielding portion via the holes and seal the holes.
Abstract:
In a method of manufacturing a semiconductor integrated circuit device having an MEMS element over a single semiconductor chip, the movable part of the MEMS element is fixed before the formation of a rewiring. After formation of the rewiring, the wafer is diced. Then, the movable part of the MEMS element is released by etching the wafer.
Abstract:
A method for applying a pressure-sensitive gel material during assembly of an array of pre-singulated packaged semiconductor devices. In the method, pressure-sensitive gel material is dispensed onto a first semiconductor device of the array, where the first semiconductor device is disposed within a first cavity. A first curing process is performed to partially cure the pressure-sensitive gel material in the first cavity. Pressure-sensitive gel material is then dispensed onto another semiconductor device of the array, where the other semiconductor device is disposed within another cavity. The first curing process is initiated before the dispensing of the pressure-sensitive gel material inside of the other cavity is completed and initially cures pressure-sensitive gel material for fewer than all of the pre-singulated packaged semiconductor devices of the array.
Abstract:
A method embodiment for forming a micro-electromechanical (MEMS) device includes providing a MEMS wafer, wherein a portion of the MEMS wafer is patterned to provide a first membrane for a microphone device and a second membrane for a pressure sensor device. A carrier wafer is bonded to the MEMS wafer, and the carrier wafer is etched to expose the first membrane for the microphone device to an ambient environment. A MEMS substrate is patterned and portions of a first sacrificial layer are removed of the MEMS wafer to form a MEMS structure. A cap wafer is bonded to a side of the MEMS wafer opposing the carrier wafer to form a first sealed cavity including the MEMS structure. A second sealed cavity and a cavity exposed to an ambient environment on opposing sides of the second membrane for the pressure sensor device are formed.