Abstract:
Methods for making MEMS devices such as interferometric modulators involve selectively removing a sacrificial portion of a material to form an internal cavity, leaving behind a remaining portion of the material to form a post structure. The material may be blanket deposited and selectively altered to define sacrificial portions that are selectively removable relative to the remaining portions. Alternatively, a material layer can be laterally recessed away from openings in a covering layer. These methods may be used to make unreleased and released interferometric modulators.
Abstract:
Methods for making MEMS devices such as interferometric modulators involve selectively removing a sacrificial portion of a material to form an internal cavity, leaving behind a remaining portion of the material to form a post structure. The material may be blanket deposited and selectively altered to define sacrificial portions that are selectively removable relative to the remaining portions. Alternatively, a material layer can be laterally recessed away from openings in a covering layer. These methods may be used to make unreleased and released interferometric modulators.
Abstract:
An object of the present invention is to provide a technique for reducing a step height to be covered by photoresist during formation of an electrode connected to a semiconductor substrate, e.g. a silicon substrate on which an acceleration sensor resides. In order to achieve this object, an opening (80) for formation of an electrode (90) is formed before formation of a sacrificial layer (4), semiconductor film (50), and fixed electrode (51). Therefore thick photoresist is not required.
Abstract:
The current invention provides for encapsulated release structures, intermediates thereof and methods for their fabrication. The multi-layer structure has a capping layer, that preferably comprises silicon oxide and/or silicon nitride, and which is formed over an etch resistant substrate. A patterned device layer, preferably comprising silicon nitride, is embedded in a sacrificial material, preferably comprising polysilicon, and is disposed between the etch resistant substrate and the capping layer. Access trenches or holes are formed in to capping layer and the sacrificial material are selectively etched through the access trenches, such that portions of the device layer are release from sacrificial material. The etchant preferably comprises a noble gas fluoride NGF2x (wherein Ng=Xe, Kr or Ar: and where x=1, 2 or 3). After etching that sacrificial material, the access trenches are sealed to encapsulate released portions the device layer between the etch resistant substrate and the capping layer. The current invention is particularly useful for fabricating MEMS devices, multiple cavity devices and devices with multiple release features.
Abstract:
Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric. Under certain embodiments, the nanotube article is electromechanically deflectable into contact with the conductive trace and the contact is either a volatile state or non-volatile state depending on the device construction. Under certain embodiments, the vertically oriented device is arranged into various forms of three-trace devices. Under certain embodiments, the channel may be used for multiple independent devices, or for devices that share a common electrode.
Abstract:
A released beam structure fabricated in trench and manufacturing method thereof are provided herein. One embodiment of a released beam structure according to the present invention comprises a semiconductor substrate, a trench, a first conducting layer, and a beam. The trench extends into the semiconductor substrate and has walls. The first conducting layer is positioned over the walls of the trench at selected locations. The beam is positioned with the trench and is connected at a first portion thereof to the semiconductor substrate and movable at a second portion thereof. The second portion of the beam is spaced from the walls of the trench by a selected distance. Therefore, the second portion of the beam is free to move in a plane that is perpendicular or parallel to the surface of the substrate, and could be deflected to electrically contact with the walls of the trench in response to a predetermined acceleration force or a predetermined temperature variation applied on the beam structure. Other beam structures such as a beam held at both ends, or a beam held in the middle are also possible. Several beam structures at different angles can be fabricated simultaneously and mechanical etching stops are automatically formed to prevent unwanted overstress conditions when manufacturing several beam structures at the same time. Beam structures can also be manufactured in three orthogonal directions, providing information on acceleration in any direction.
Abstract:
The present invention is directed to manufacturing methods of electrostatic type MEMS devices. The manufacturing method of the present invention includes the steps of forming a substrate side electrode on a substrate, forming a fluid film before or after forming a sacrificial layer, further forming a beam having a driving side electrode on a planarized surface of the fluid film, and finally, removing the sacrificial layer. Furthermore, performing the foregoing method planarizes the surface of a driving side electrode, reduces fluctuations in the shape of a beam, and improves the performance and the uniformity of the MEMS device.
Abstract:
A process for making a microdevice that includes the steps of providing a base member and selectively electroforming a support member for supporting a microplatform with respect to the base member. The process also includes the steps of selectively electroforming the microplatform and forming a flexible hinge member for hingedly connecting the microplatform to the support member and allowing relative movement of the microplatform with respect to the support member. This microdevice, when compared to prior art devices, can have improved mechanical strength, rigidity, low deformation, and high planarity.
Abstract:
A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.
Abstract:
Micro-eletromechanical devices, substrate assemblies from which the devices can be manufactured, and methods to manufacture the devices are disclosed. The invention combines the advantages of conventional surface and bulk micromachining processes using a sacrificial layer to create an integrated micro-electromechanical system (MIEMS) technology that provides high performance, high yield, and manufacturing tolerance. The devices manufactured according to the present invention include, but are not limited to, pressure sensors, vibration sensors, accelerometers, gas or liquid pumps, flow sensor, resonant devices, and infrared detectors.