Abstract:
Using an optical computing device includes optically interacting electromagnetic radiation with a sample and a first integrated computational element arranged within a primary channel, optically interacting the electromagnetic radiation with the sample and a second integrated computational element arranged within a reference channel, producing first and second modified electromagnetic radiations from the first and second integrated computational elements, respectively, receiving the first modified electromagnetic radiation with a first detector, and receiving the second modified electromagnetic radiation with a second detector, generating a first output signal with the first detector and a second output signal with the second detector, and computationally combining the first and second output signals with a signal processor to determine the characteristic of interest of the sample.
Abstract:
Methods and systems for real time, in situ monitoring and blending of hydrocarbon fluids from multiple transmission lines feeding into a downstream line or vessel are described. The method and system include the scanning of the NIR range on fluids within each of at least two transmission lines. The spectroscopic optical data from the two scans is used to determine flow rates of the fluids from each transmission line to, for example, achieve a desired energy content, physical properties, or speciation in the blended fluid.
Abstract:
Embodiments of the present invention provide gem identification method and apparatus. The method comprises the steps: (a) placing a sample to be detected over a light transmission hole formed on a carrying surface of an object table and emitting, by an optical probe disposed below the carrying surface, an exciting light onto the sample through the light transmission hole and then collecting a Raman scattered light from the sample by the optical probe; (b) acquiring a Raman spectrogram of the sample from the collected Raman scattered light from the sample; and (c) comparing the Raman spectrogram with a reference Raman spectrogram library for gems to identify the sample. The method and apparatus may achieve effective, convenient and accurate inspections of the gems.
Abstract:
A lasing wavelength of a laser diode is determined by applying a forward current to the p-n junction of the laser diode and measuring a voltage across the p-n junction. The lasing wavelength can be determined by performing a simple wavelength calibration of the laser diode. This allows one to stabilize the lasing wavelength, and also to use the laser diode as a reference wavelength source.
Abstract:
The current invention considers the spectrum as a multimodal distribution over a list of structures containing the wavelength as the main entry and the other information mentioned above in the list as additional entries. Each line is then given a probability of contributing to the spectral line. In the case of multiple spectral lines, inference between spectral lines and their respective levels of confidence will provide a complete picture of the list of probable emitters with a probability factor for each line in order to provide a quantitative assignment of the spectral lines and profiling for a given spectrum.
Abstract:
Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
Abstract:
A dispersion spectrometer comprises a wavelength dispersive element located within a path of incoming radiant energy; and a first detector disposed to detect incoming radiant energy dispersed by the dispersive element, The spectrometer further comprises a second detector disposed to register the intensity of at least a portion of the un-dispersed incoming radiation and configured to generate a signal representative of the registered intensity, the first detector being adapted to have operational parameters in the form of integration time and/or sensitivity gain varied in response to the signal.
Abstract:
Methods and systems for real time, in situ monitoring of fluids, and particularly the determination of both the energy content and contaminants in a gas or oil transmission facility, are provided. The system may include two separate scanning sources to scan two different, but overlapping, NIR ranges, or may involve two separate scans from a single scanning spectroscopy source. The first scan ranges from approximately 1550 nm up through 1800 nm and a second scan concurrently scans at a high resolution across a band from approximately 1560-1610 nm, the wavelength of interest for hydrogen sulfide (though similar scans are contemplated in alternative wavelength ranges for alternative contaminants). The second scan may provide very narrow (0.005 nm) step resolution over just the wavelength of interest for the contaminant and may scan at a substantially higher power level. The spectroscopic optical data from the two scans, however obtained, must then be combined into an analytical processing module containing models that analyze the multi-scan data and yield both energy content and contaminant quantitative data.
Abstract:
A control circuit operably couples to a non-invasive imaging system that utilizes a particular corresponding effective spectrum and receives imaging information as pertains to an object being imaged. The control circuit uses that information to identify the particular corresponding spectrum for the corresponding source of radiation by, at least in part, evaluating candidate spectra as a function, at least in part, of physical likelihood (for example, by identifying a spectrum that is physically unlikely or physically impossible). Evaluating the candidate spectra as a function of physical likelihood can comprise evaluating the candidate spectra with respect to regularization, smoothness, being non-negative, normalization characteristics, monotonic characteristics, envelope limitations, quasi-concave characteristics, and/or consistency with one or more physics models of choice to note but a few options in these regards.
Abstract:
Provided is a method for performing a wavelength calibration of a monochromator with a diffraction grating by casting light from a standard light source whose emission intensity contains a change with a predetermined cycle onto the diffraction grating and measuring an intensity of light reflected by the grating. The method includes the steps of: measuring at least two times the intensity of the reflected light from the grating within the aforementioned cycle at each of the rotational positions of the grating corresponding to a range of wavelengths including a peak wavelength of a bright line spectral light generated by the standard light source; determining an intensity value 201 at each rotational position based on all the measured values obtained at the rotational position; and locating, as the peak wavelength of the bright line spectral light, a wavelength at which the intensity value 201 is maximized.