Abstract:
The surface contribution to appearance of an object is characterized using a plurality of viewing and illumination angles. The color determining and surface contribution are determined to aid in the predicting of the appearance of an object as well as matching an object to another object.
Abstract:
A computer color matching method of paint for measuring a proper formulation of colorants for obtaining a target color or color and luster, or a proper formulation of colorants and luster color materials, directly in a liquid state of paint, without preparing painted panels from adjusted paint, and calculating the adjusted blending ratio easily and accurately, and a paint manufacturing method by using this method. A color matching method of determining the blending ratio of colorants and luster color materials conforming to a target color by computation, when color matching a metallic and pearlescent paint composed of plural colorants and luster color materials, in which the color of a paint as liquid varied in the volume formulation ratio of usable colorants and luster color materials is preliminarily measured by paint color measuring means, the data is stored in the memory of a computer, the color of each one of two or more paints adjusted in the blending ratio for realizing a target color is measured by paint color measuring means when color matching a metallic and pearlescent paint, a reproduced color is predicted and computed by using the measured data and the data on the memory and considering change in the calorimetric value due to difference in blending ratio of colorants and luster color materials, and an appropriate blending ratio of colorants and luster color materials is determined by computation.
Abstract:
By inputting a predetermined number of first data to a color reproducing device, a predetermined number of reproduced colors are respectively measured, and a plurality of relationships of correspondence between inputted first data and measured second data are determined. On the basis of the plurality of relationships of correspondence between the first data and the second data, relationships of interpolated correspondence, which express relationships between second data other than the measured second data and first data corresponding to the second data other than the measured second data, are estimated. After second data which is the same as or closest to a color to be reproduced is selected, first data corresponding to selected second data is selected on the basis of the relationships of correspondence and the relationships of interpolated correspondence. Selected first data is then inputted to the color reproducing device, and a color to be reproduced is reproduced.
Abstract:
A rendering apparatus includes: a radiant-energy calculating device for determining a spectral radiance for each infinitesimal area of an object by using a spectral radiance of a light source irradiating the object, a spectral reflectance in the infinitesimal area of the object, and a spectral reflectance factor in a wide area of the object; a color-specification-value calculating device for calculating color specification values of a colorimetric system on the basis of the spectral radiance obtained for each infinitesimal area; a transforming device for transforming the color specification values into image data for displaying an image of the object; and a display device for displaying the image of the object on the basis of the image data.
Abstract:
A system which can be used in the paint manufacturing industry to shade batches of paint to desired standard color based on standard values for the standard color by use of physical differences of the paint to be shaded and the standard paint determined from tristimulus values derived from panels sprayed with the respective paints.
Abstract:
Described herein is a method for generating a bi-directional texture function (BTF) of an object, the method including at least the following steps:
measuring an initial BTF for the object using a camera-based measurement device, capturing spectral reflectance data for the object for a pre-given number of different measurement geometries using a spectrophotometer, and adapting the initial BTF to the captured spectral reflectance data), thus, gaining an optimized BTF.
Also described herein are respective systems for generating a bi-directional texture function of an object.
Abstract:
A computer-implemented method for identifying an effect pigment, the method comprising executing, on at least one processor of at least one computer, steps of: a) acquiring sample image data describing a digital image of a layer comprising a sample effect pigment b) determining, based on the sample image data, sparkle point data describing a sample distribution of sparkle points defined by the digital image, wherein the sample distribution is defined in an N-dimensional color space, wherein N is an integer value equal to or larger than 3; c) determining, based on the sparkle point data, sparkle point transformation data describing a transformation of the sample distribution into an (N-1)-dimensional color space; d) determining, based on the sparkle point transformation data, sparkle point distribution geometry data describing a geometry of the sample distribution; e) acquiring reference distribution geometry data describing a geometry of a reference distribution of sparkle points in the (N-1)-dimensional color space; f) acquiring reference distribution association data describing an association between the reference distribution and an identifier of the reference distribution; g) determining, based on the sparkle point distribution geometry data and the reference distribution geometry data and the reference distribution association data, sample pigment identity data describing an identity of the sample effect pigment.
Abstract:
A computer-implemented method for identifying an effect pigment, the method comprising executing, on at least one processor of at least one computer, steps of: a) acquiring sample image data describing a digital image of a layer comprising a sample effect pigment b) determining, based on the sample image data, sparkle point data describing a sample distribution of sparkle points defined by the digital image, wherein the sample distribution is defined in an N-dimensional color space, wherein N is an integer value equal to or larger than 3; c) determining, based on the sparkle point data, sparkle point transformation data describing a transformation of the sample distribution into an (N−1)-dimensional color space; d) determining, based on the sparkle point transformation data, sparkle point distribution geometry data describing a geometry of the sample distribution; e) acquiring reference distribution geometry data describing a geometry of a reference distribution of sparkle points in the (N−1)-dimensional color space; f) acquiring reference distribution association data describing an association between the reference distribution and an identifier of the reference distribution; g) determining, based on the sparkle point distribution geometry data and the reference distribution geometry data and the reference distribution association data, sample pigment identity data describing an identity of the sample effect pigment.
Abstract:
A device for radiometrically gauging the surface of a measurement object (O) includes: at least one measurement array featuring an illumination array and a pick-up array; and a processor (P) for controlling the illumination array and the pick-up array and for processing measurement signals produced by the pick-up array and for providing processed image data. The illumination array exposes a region of the measurement object (O) to illumination light at an illumination angle (θi) and an illumination aperture angle (αi), and the pick-up array captures measurement light, reflected by the measurement object (O), at a pick-up angle (θv) and a pick-up aperture angle (αv) and guides it onto an image sensor exhibiting a pixel structure. The measurement object (O) is gauged multispectrally in multiple wavelength ranges, wherein the image sensor produces multispectral image data. Angular and spatial conditions are indicated which optimise the measurement device (MD) with regard to characterising sparkles.
Abstract:
An apparatus and method for customized hair-coloring is disclosed. In some embodiments the method comprises: a. performing a plurality of light-scattering measurements upon a sample of hair such that for each light-scattering measurement, the sample of hair is illuminated from a different respective direction; b. comparing the results of the light-scattering measurements; c. in accordance with results of the comparing, computing an initial damage-state of hair of the sample by comparing the results of the light-scattering measurements; d. obtaining an initial color-state of the hair of the sample; and e. computing a hair-coloring composition that is predicted to transform the hair sample from the initial color-state to a target color-state such that in response to a determining of a greater (lesser) extent of initial damage, a concentration of artificial-colorant(s) within the computed coloring composition is reduced (increased).