Abstract:
There is provided a wiring substrate. The wiring substrate includes: a heat sink; an insulating layer on the heat sink; first and second wiring patterns on the insulating layer to be separated from each other at a certain interval; a first reflective layer including a first opening on the insulating layer so as to cover the first and second wiring patterns, wherein a portion of the first and second wiring patterns is exposed from the first opening, and wherein the portion of the first and second wiring patterns is defined as a mounting region on which a light emitting element is to be mounted; and a second reflective layer on the insulating layer, wherein the second reflective layer is interposed between the first and second wiring patterns. A thickness of the second reflective layer is smaller than that of the first reflective layer.
Abstract:
An electrical connector comprises a PCB (220) having a front edge to be inserted into a mating receptacle. The PCB comprises a top face having a row of first mating pads (242), and an opposite bottom face having a row of second mating pads (262) and a row of third mating pads (264) behind the second row of mating pads. The first and second mating pads are compatibly fit with an SFP receptacle (120). The PCB comprises a first sub-PCB (540) having a first outer layer containing the first mating pads and an opposite second outer layer containing the second mating pads, and a second sub-PCB (560) attached to the second outer layer on an area behind the second mating pads, the second sub-PCB having a second outer layer containing the third mating pads.
Abstract:
Example embodiments are directed to circuit boards, connectors, cases, circuit board assemblies, case assemblies, devices and methods of manufacturing the same, which are common to at least two different form factors.
Abstract:
Example embodiments relate to semiconductor modules and semiconductor devices including the same. The semiconductor module may include a board, a plurality of semiconductor chips, a plurality of first taps, and a plurality of second taps. The board may include a chip region, a first tap region, and a second tap region. The first tap region of the board may have a first width that extends in a thickness direction of the board. The second tap region may have a second width that is less than the first width. The second tap region may be disposed under the first tap region. The semiconductor chips may be mounted in the chip region of the board. The first taps may be disposed in the first tap region, and the second taps may be disposed in the second tap region. The first and second taps may be configured to transmit/receive an electric signal to/from the plurality of semiconductor chips.
Abstract:
A receptacle includes a signal terminal, a ground terminal, and a signal terminal. A second portion of the ground terminal is distanced from a first portion of the signal terminal in an extension direction. A third portion of the signal terminal is distanced from the first portion of the signal terminal in the extension direction.
Abstract:
A small form-factor pluggable (SFP) module includes a board with an end portion to be inserted into a connector device. A first set of signal pads is arranged along an edge of a first surface of the SFP board at the end portion and a second set of signal pads along an edge of a second surface of the SFP board at the end portion. A third set of signal pads is disposed on the second surface at the end portion, offset from the edge of the second surface. A transceiver, coupled to the signal pads of the first, second, and third sets of signal pads, is configured to transmit and receive signals via the third set of signal pads and to transmit and receive signals via at least one of the first and second sets of signal pads.
Abstract:
A method of manufacturing a flexible printed circuit board having an insulation layer, a first signal wiring layer including a microstrip line, a second signal wiring layer including a signal connection terminal for allowing the microstrip line to connect the exterior connector electrically, and a ground conductive section having a ground connection terminal for connecting the exterior connector. The microstrip line and the signal connection terminal are connected to each other by a wiring via hole. The wiring via hole passes through the insulation layer, the first signal wiring layer, and the second signal wiring layer. The microstrip line has a taper section which gradually enlarges a width of the microstrip line toward the wiring via hole in the vicinity of the wiring via hole. The ground conductive section that corresponds to the microstrip line has a taper section with a shape matching the taper section of the microstrip line.
Abstract:
A mounting structure includes a first substrate that has a first surface and a second surface, a plurality of first connection terminals that are disposed on the first surface in a first direction, a plurality of second connection terminals that are disposed on the first surface in a second direction perpendicular to the first direction and that are disposed at predetermined gaps from the first connection terminals, a plurality of connection wiring lines that are disposed on the second surface, each having first portions that overlap the first and second connection terminals in plan view and a second portion that is formed to have a width narrower than those of the first and second connection terminals in the first direction, a plurality of through holes that pass through the first substrate so as to correspondingly connect the second connection terminals to the connection wiring lines, and a second substrate that has a plurality of third connection terminals correspondingly connected to the first and second connection terminals and correspondingly overlap the first and second connection terminals in plan view.
Abstract:
A flexible printed circuit board has an insulation layer, a first signal wiring layer including a microstrip line, a second signal wiring layer including a signal connection terminal for allowing the microstrip line to connect the exterior connector electrically, and a ground conductive section having a ground connection terminal for connecting the exterior connector. The microstrip line and the signal connection terminal are connected to each other by a wiring via hole. The wiring via hole passes through the insulation layer, the first signal wiring layer, and the second signal wiring layer. The microstrip line has a taper section which gradually enlarges a width of the microstrip line toward the wiring via hole in the vicinity of the wiring via hole. The ground conductive section that corresponds to the microstrip line has a taper section with a shape matching the taper section of the microstrip line.
Abstract:
A flexible printed circuit board has an insulation layer, a first signal wiring layer including a microstrip line, a second signal wiring layer including a signal connection terminal for allowing the microstrip line to connect the exterior connector electrically, and a ground conductive section having a ground connection terminal for connecting the exterior connector. The microstrip line and the signal connection terminal are connected to each other by a wiring via hole. The wiring via hole passes through the insulation layer, the first signal wiring layer, and the second signal wiring layer. The microstrip line has a taper section which gradually enlarges a width of the microstrip line toward the wiring via hole in the vicinity of the wiring via hole. The ground conductive section that corresponds to the microstrip line has a taper section with a shape matching the taper section of the microstrip line.