Abstract:
A tin-plated surface 7 is formed by hot-dip coating a solder containing a lead-free tin as the main component on an electrode 6 of a board 4 with which a connector terminal 1 comes in contact.
Abstract:
A tin-plated surface 7 is formed by hot-dip coating a solder containing a lead-free tin as the main component on an electrode 6 of a board 4 with which a connector terminal 1 comes in contact.
Abstract:
An electrical connector includes an insulative housing defining a number of passageways and a plurality of electrical contacts received in corresponding passageways of the insulative housing. Each contact is formed with a base portion, a solder portion bended from a bottom edge of the base portion, a spring portion and a connecting portion linking the base portion and the spring portion. The spring portion has a tip portion at a top end thereof, which is twisted and protrudes out of the insulative housing.
Abstract:
An electrical connector includes an insulative housing defining a number of passageways and a plurality of electrical contacts received in corresponding passageways of the insulative housing. Each contact is formed with a base portion, a solder portion bended from a bottom edge of the base portion, a spring portion and a connecting portion linking the base portion and the spring portion. The spring portion has a tip portion at a top end thereof, which is twisted and protrudes out of the insulative housing.
Abstract:
The present invention relates generally to permanent interconnections between electronic devices, such as integrated circuit packages, chips, wafers and printed circuit boards or substrates, or similar electronic devices. More particularly it relates to high-density electronic devices.The invention describes means and methods that can be used to counteract the undesirable effects of thermal cycling, shock and vibrations and severe environment conditions in general.For leaded devices, the leads are oriented to face the thermal center of the devices and the system they interact with.For leadless devices, the mounting elements are treated or prepared to control the migration of solder along the length of the elements, to ensure that those elements retain their desired flexibility.
Abstract:
A method and apparatus for interconnecting electronic circuit boards through the use of twisted wire jumpers which are formed from multifilament wire and which have enlarged bird cages formed along the pins. The pins are drawn through a stack of circuit boards to position the cages in contact with interconnection aperture located in the printed circuit boards. The frictional engagement of the cages in the apertures provides both electrical interconnection of, and mechanical coupling between the printed circuit boards.This application is a division of co pending patent application Her. No. 07/347,507, filed May 4, 1989, now U.S. Pat. No. 5,014,419, issued May 14, 1991, U.S. Pat. application Ser. No. 07/347,507 was a continuation-in-part of application Ser. No. 07/053,142, filed May 21, 1989, now U.S. Pat. No. 5,054,192, issued Oct. 8, 1991. All of these applications and patents are assigned to the same assignee.
Abstract:
A method and apparatus for interconnecting electronic circuit boards through the use of twisted wire jumpers which are formed from multifilament wire and which have enlarged bird cages formed along the pins. The pins are drawn through a stack of circuit boards to position the cages in contact with interconnection apertures located in the printed circuit boards. The frictional engagement of the cages in the apertures provides both electrical inter connection of, and mechanical coupling between the printed circuit boards.
Abstract:
A submount for arranging electronic components on a substrate is provided. The submount comprises a head member and at least one substrate-engaging member protruding from the head member. The head member comprises at least two, from each other isolated, electrically conductive portions, where each electrically conductive portion comprises a component contact, adapted for connection of electronic components thereto, and a substrate contact on arranged on said substrate side, adapted for bringing said electrically conductive portions in contact with a circuitry comprised in said substrate. The submount of the present invention may be used to attach electronic components, such as light-emitting diodes, to a textile substrate, without the need for soldering the electronic component directly on the substrate.
Abstract:
The present invention relates generally to permanent interconnections between electronic devices, such as integrated circuit packages, chips, wafers and printed circuit boards or substrates, or similar electronic devices. More particularly it relates to high-density electronic devices. The invention describes means and methods that can be used to counteract the undesirable effects of thermal cycling and thermal fluctuations. The invention more specifically shows certain improvements related to its mother patent application, called Thermal Flex Contact Carrier (TFCC), where the improvements allow the height of the contact elements to be now not restricted anymore by the size of the spaces or distances between the contact pads of the devices to be attached together. Certain improvements to the carrier wafer are also shown.