Abstract:
Methods and apparatus for standardizing quantitative measurements from a microscope system. The process includes a calibration procedure whereby an image of a calibration slide is obtained through the optics of the microscope system. The calibration slide produces a standard response, which can be used to determine a machine intrinsic factor for the particular system. The machine intrinsic factor can be stored for later reference. In use, images are acquired of a target sample and of the excitation light source. The excitation light source sample is obtained using a calibration instrument configured to sample intensity. The calibration instrument has an associated correction factor to compensate its performance to a universally standardized calibration instrument. The machine intrinsic factor, sampled intensity, and calibration instrument correction factor are usable to compensate a quantitative measurement of the target sample in order to normalize the results for comparison with other microscope systems.
Abstract:
A method of obtaining high dynamic range, spectrally, spatially and angularly resolved radiance of a sample surface of a sample, such as a paper sheet, accomplished by an electromagnetic irradiator irradiating electromagnetic radiation of controlled spectral distribution onto a sample surface of a sample and, using an electromagnetic sensitive sensor to register the reflected spectral distribution. The spectral distribution of the intensity of the electromagnetic field is modeled to have been reflected by a plurality of spatially well defined part-surfaces of the sample surface of the sample. The electromagnetic sensitive sensor being well-defined in terms of the functional dependency between input radiation and output signal and the registering exposure time-period being selected individually for each individual sensor element, such as to compile an information volume that represents the registered high dynamic range spectrally resolved electromagnetic radiance as a function of the position of the part-surfaces within the sample surface of the sample and of the respective angle enforced on the sample while measuring.
Abstract:
A tunable microlens uses at least two layers of electrodes and a droplet of conducting liquid. Such a droplet, which forms the optics of the microlens, moves toward an electrode with a higher voltage relative to other electrodes in the microlens. When calibration of the microlens is desired, an equal and constant voltage is passed over the first layer of electrodes and a different, constant voltage is passed over the second layer of electrodes, which may, for example, be disposed in a star-like pattern. A driving force relative to each electrode in the second layer results and is proportional to the length of the circumference of the droplet that intersects with each of the electrodes. This driving force reaches equilbrium, and hence the droplet reaches its nominal centered position relative to the second layer of electrodes, when the length of intersection of the circumference of the droplet with each of the electrodes in the second layer is equal.
Abstract:
Various embodiments related to monitoring for optical faults in an optical system are disclosed. For example, one disclosed embodiment provides, in an optical system comprising a light source, a light outlet, and an optical element disposed between the light source and the light outlet, a method of monitoring for optical system faults. The method includes detecting, via a light sensor directed toward an interface surface of the optical element closest to the light source, an intensity of light traveling from the interface surface of the optical element to the light sensor, and comparing an intensity of light detected to one or more threshold intensity values. The method further includes identifying an optical system fault condition based on comparing the intensity of light detected to one or more threshold values, and modifying operation of the optical system.
Abstract:
Calibration of an arbitrary spectrometer can use a stable monolithic interferometer as a wavelength calibration standard. Light from a polychromatic light source is input to the monolithic interferometer where it undergoes interference based on the optical path difference (OPD) of the interferometer. The resulting wavelength-modulated output beam is analyzed by a reference spectrometer to generate reference data. The output beam from the interferometer can be provided to an arbitrary spectral instrument. Wavelength calibration of the arbitrary spectral instrument may then be performed based on a comparison of the spectral instrument output with the reference data. By appropriate choice of materials for the monolithic interferometer, a highly stable structure can be fabricated that has a wide field and/or is thermally compensated. Because the interferometer is stable, the one-time generated reference data can be used over an extended period of time without re-characterization.
Abstract:
The invention relates to a security sensor (10) comprising a sensing device (21), a coming optical fiber element and a going optical fiber element, the sensing device (21) comprising a housing that receives a first end of the coming element and a first end of the going element. It is characterized in that the first end of the coming element and the first end of the going element in the housing are not aligned, and in that when a light beam enters the housing through the first end of the coming element, at least part of said light beam is reflected within the housing and exits through the first end of the going element.
Abstract:
An optical method and system for generating calibration data are provided. The calibration data is for use in calibrating a part inspection system. The method includes supporting a calibration device having a central axis and a plurality of regions which are rotationally symmetric about the axis. The method further includes scanning the device with an array of spaced planes of radiation so that the device occludes each of the planes of radiation at spaced locations along the central axis to create a corresponding array of unobstructed planar portions of the planes of radiation. Each of the unobstructed planar portions contains an amount of radiation which is representative of a respective geometric dimension of the device. The method still further includes measuring the amount of radiation present in each of the unobstructed planar portions to obtain measurement signals. The method includes processing the measurement signals to obtain calibration data for calibrating the system. The calibration data is capable of converting raw data to calibrated data.
Abstract:
The apparatus and methods herein provide light sources and spectral measurement systems that can improve the quality of images and the ability of users to distinguish desired features when making spectroscopy measurements by providing methods and apparatus that can improve the dynamic range of data from spectral measurement systems.
Abstract:
A method for evaluating flare of an exposure tool has measuring a first reference integral exposure amount of illumination light emitted from the light source, and a unit reference integral exposure amount of illumination light emitted from the light source, the first reference integral exposure amount being required for the first evaluation pattern to be developed on the photosensitive film, the unit reference integral exposure amount being required for the first effective exposure region to be developed on the photosensitive film; calculating a first evaluation value by dividing the unit reference integral exposure amount by the first reference integral exposure amount; and evaluating a total flare amount of the illuminating optical system and the projecting optical system, using the first evaluation value.
Abstract:
The invention is directed to a method and a kit for calibrating a photoluminescence measurement system, in particular a fluorescence measurement system. The kit includes a number of fluorescence standards i and their corrected and certified fluorescence spectra Ii(λ), whereby the fluorescence standards i are selected, so that their spectrally corrected fluorescence spectra Ii(λ) cover a broad spectral range with high intensity. The standards are characterized by large half-widths FWHMi of their bands of at least 1400 cm−1. According to the method of the invention, partial correction functions Fi(λ) are generated by forming the quotient of the measured fluorescence spectra Ji(λ) and the corresponding corrected fluorescence spectra Ii(λ), which are then combined to form a total correction function F(λ) for a broad spectral range. The combination factors αi are hereby computed by statistical averaging of consecutive partial correction functions Fi(λ) over only a predefined, limited overlap region λi/i+1±ΔλOL about the mutual crossover wavelength λi/i+1.
Abstract translation:本发明涉及用于校准光致发光测量系统,特别是荧光测量系统的方法和试剂盒。 该试剂盒包括许多荧光标准品I及其校准和认证的荧光光谱Ii(λ),从而选择荧光标准品,以使其光谱校正的荧光光谱Ii(λ)覆盖高强度的宽光谱范围。 标准的特征在于它们的至少1400cm-1的带的宽半宽度FWHMi。 根据本发明的方法,通过形成测量的荧光光谱Ji(λ)和对应的校正荧光光谱Ii(λ)的商产生部分校正函数Fi(λ),然后将其组合以形成总校正 函数F(λ)用于宽光谱范围。 因此,通过仅关于相互交叉波长λi/ i + 1的预定义的有限重叠区域λi/ i + 1±&Dgr;λOL的连续部分校正函数Fi(λ)的统计平均来计算组合因子αi。