Abstract:
A high pressure gas discharge lamp and the method of making same utilizing integrated circuit fabrication techniques. The lamp is manufactured from heat and pressure resistant planar substrates in which cavities are etched, by integrated circuit manufacturing techniques, so as to provide a cavity forming the gas discharge tube. Electrodes are deposited in the cavity. The cavity is filled with gas discharge materials such as mercury vapor, sodium vapor or metal halide. The substrates are bonded together and channels may be etched in the substrate so as to provide a means for connection to the electrodes. Electrodeless RF activated lamps may also be fabricated by this technique. Micro-lasers may also be fabricated by this technique as well.
Abstract:
A broad area plasma lighting device in which a sealed gas envelope placed adjacent to a planar inductive coupling structure generates visible light. Representative planar inductive coupling structures include a planar spiral coil and a parallel conductor coupling structure. According to the invention, a parallel conductor coupling structure has two basic forms: separate parallel conductors each driven by its own generator/tuning circuit, or single conductor such as a flattened helix or series of square coils driven by one generator/tuning circuit. In addition, a plasma generating device having one or more parallel conductor inductive coupling structures is described. The resulting plasma generator can be used in such applications as plasma processing and inductive plasma lighting.
Abstract:
A sanitizer uses a radiant energy source such as a microwave source to excite a gas contained in a bulb so that the gas produces ultraviolet radiation that can be used to sanitize substances exposed to the radiation. The ultraviolet radiation may also be used to generate ozone from oxygen in air or another gas containing oxygen and the ozone may be used by itself or in combination with ultraviolet exposure to sanitize substances. The bulb for generating ultraviolet radiation can be shaped so that substances to be sterilized are able to pass through the bulb, so that objects (even metal objects) are enclosed by the bulb and shielded from the radiant energy source, or so that the bulb is located at the end of a waveguide and can be positioned to sanitize inaccessible surfaces or substances.
Abstract:
An amalgam system for optimizing the mercury vapor pressure of an electrodeless discharge fluorescent lamp is disclosed. A coil network induces an electric discharge in a gas mixture contained in a sealed lamp vessel. An amalgam is supported in the discharge and thermally isolated from the lamp vessel by a thin glass strand. The discharge transfers power directly to the amalgam, thus quickly heating the amalgam. Rapid heating of the amalgam provides a rapid increase in mercury vapor pressure in the lamp so that the light output rises quickly when the lamp is energized. An impedance matching and filter network is constructed such that, in combination with the coil/plasma load, it provides a desired steady-state impedance and a desired start-up impedance.
Abstract:
A light source including a gaseous medium which is excited to a light-emitting state by means of a microwave electromagnetic field, wherein the electromagnetic field is generated by circularly polarised microwave radiation. A preferred form of the invention is a laser.
Abstract:
The electrodeless low pressure discharge lamp has a lamp vessel (1) which is fused to the flared portion (6) of a flared tube (5) which extends into the lamp vessel. A power coupler (20) is demountably secured to the lamp vessel and comprises a soft magnetic core (21), surrounded by an electric coil (22), and a heat conducting element (23) in the core. This element is a solid rod, the coil (22) is present in a region (8) adjacent the flared portion (6) of the flared tube (5), and an elastic material couples the rod (23) laterally to the core (21). The construction of the lamp avoids the use of an expensive heat pipe as a heat conducting element.
Abstract:
An electrodeless discharge lamp has a thinner wall portion located proximate a position of high applied power. Since the heat capacity of the thinner wall portion is smaller then the remainder of the bulb wall, the thinner wall portion cools faster when the lamp power is turned off, and the condensable part of the fill tends to condense at this bulb wall portion. When the power is turned on again, since the thinner wall portion is located at a position of high power application, the fill is available in such region to be evaporated, thereby resulting in more rapid starting.
Abstract:
A discharge lamp having a large light output and a stable discharge. On an external surface of a cylindrical glass bulb enclosing a rare gas such as xenon, a pair of beltlike electrodes are mounted so as to face each other. A light output part is provided between the electrodes, and the electrodes are situated close to each other on the opposite side to the light output part. An image display device is constituted by arranging a plurality of the discharge lamps.
Abstract:
A glass rod extending through and sealed to the exhaust tube of an electrodeless SEF fluorescent discharge lamp has a metal support member at one end thereof for supporting an amalgam at or near the apex of the lamp envelope. The metal support member may comprise a spiral-shaped wire, a wire screen, or a wire basket. Preferably, the amalgam is maintained in contact with the apex of the lamp envelope. If desired, the metal support member may comprise a magnetic material to allow for magnetic transport of the amalgam assembly during lamp processing. The metal support member restricts spreading of the amalgam when in a liquid state; and the glass rod provides rigid support for the amalgam independent of lamp orientation.
Abstract:
An electrode-less high pressure discharge lamp has a lamp vessel which is surrounded by an electric coil having turns. End portions of the coil are electrically connected to current conductors. The turns of the coil are supported by aluminium nitride, which is in thermal contact with the current conductors. There is a good heat transfer from the coil to the conductors, keeping the coil relatively cool and efficient. The coil screens the lamp vessel to a small extent only, thereby improving the lamp efficacy.