Abstract:
A microstructure device that includes at least one thermally compensating anchor for preventing undesirable thermal displacement or actuation during manufacturing or operation is disclosed. In particular, the microstructure device includes a substrate and a movable structure suspended above the substrate by at least one anchor. The anchor is attached to the substrate. The anchor also includes an upper area of an upper surface region of a bottom portion attached to a lower surface of a proximal portion of the movable structure. The anchor further includes a top portion having a lower area of a lower surface region attached to an upper surface of the proximal portion of the movable structure, wherein the lower surface region of the top portion and the upper surface region of the bottom portion are geometrically asymmetric.
Abstract:
A MEMS structure and methods of manufacture. The method includes forming a sacrificial metal layer at a same level as a wiring layer, in a first dielectric material. The method further includes forming a metal switch at a same level as another wiring layer, in a second dielectric material. The method further includes providing at least one vent to expose the sacrificial metal layer. The method further includes removing the sacrificial metal layer to form a planar cavity, suspending the metal switch. The method further includes capping the at least one vent to hermetically seal the planar cavity.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is movable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
An actuator element includes: a piezoelectric body; a pair of electrodes mutually opposing to each other via the piezoelectric body; a diaphragm to which the piezoelectric body sandwiched between the pair of electrodes is bonded; and a base substrate arranged to oppose a movable part including the piezoelectric body and the diaphragm, the movable part being displaced in a direction toward the base substrate by application of a drive voltage to the pair of electrodes, wherein polarization (Pr)-electric field (E) hysteresis characteristics of the piezoelectric body are biased with respect to an electric field, and by application of a voltage in an opposite direction to the drive voltage, to the pair of electrodes, the movable part is displaced in a direction away from the base substrate.
Abstract:
Methods for Implementation of a Switching Function in a Microscale Device and for Fabrication of a Microscale Switch. According to one embodiment, a method is provided for implementing a switching function in a microscale device. The method can include providing a stationary electrode and a stationary contact formed on a substrate. Further, a movable microcomponent suspended above the substrate can be provided. A voltage can be applied between the between a movable electrode of the microcomponent and the stationary electrode to electrostatically couple the movable electrode with the stationary electrode, whereby the movable component is deflected toward the substrate and a movable contact moves into contact with the stationary contact to permit an electrical signal to pass through the movable and stationary contacts. A current can be applied through the first electrothermal component to produce heating for generating force for moving the microcomponent.
Abstract:
A MEMS vibrator includes: a substrate; a first electrode disposed above the substrate; and a second electrode disposed in a state where at least one portion of the second electrode has a space between the first electrode and the second electrode, and having a beam portion capable of vibrating, in the thickness direction of the substrate, with electrostatic force and a supporting portion supporting one edge of the beam portion and disposed above the substrate, wherein a supporting side face of the supporting portion supporting the one edge has a bending portion which bends in plan view from the thickness direction of the substrate, and the one edge is supported by the supporting side face including the bending portion.
Abstract:
Normally closed (shut) micro-electro-mechanical switches (MEMS), methods of manufacture and design structures are provided. A method of forming a micro-electrical-mechanical structure (MEMS), includes forming a plurality of electrodes on a substrate, forming a beam structure in electrical contact with a first of the electrodes, and bending the beam structure with a thermal process. The method further includes forming a cantilevered electrode extending over an end of the bent beam structure, and returning the beam structure to its original position, which will contact the cantilevered electrode in a normally closed position.
Abstract:
A MEMS IR sensor, with a cavity in a substrate underlapping an overlying layer and a temperature sensing component disposed in the overlying layer over the cavity, may be formed by forming an IR-absorbing sealing layer on the overlying layer so as to cover access holes to the cavity. The sealing layer is may include a photosensitive material, and the sealing layer may be patterned using a photolithographic process to form an IR-absorbing seal. Alternately, the sealing layer may be patterned using a mask and etch process to form the IR-absorbing seal.
Abstract:
The present Disclosure provides for fabrication devices and methods for manufacturing a micro-electromechanical system (MEMS) switch on a substrate. The MEMS fabrication device may have a first and second sacrificial layer that form the mold of an actuation member. The actuation member is formed over the first and second sacrificial layers to manufacture a MEMS switch from the MEMS fabrication device.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a lower wiring layer on a substrate. The method further includes forming a plurality of discrete wires from the lower wiring layer. The method further includes forming an electrode beam over the plurality of discrete wires. The at least one of the forming of the electrode beam and the plurality of discrete wires are formed with a layout which minimizes hillocks and triple points in subsequent silicon deposition.