Abstract:
An electron emission device having improved electron emission efficiency and an electron emission type backlight unit including the electron emission device in which an electric field between an anode electrode and a cathode electrode is effectively blocked, and electrons are emitted continuously and stably by a low gate voltage, thereby improving light-emitting uniformity and light-emitting efficiency. Also provided is a flat display apparatus employing the electron emission type backlight unit having the electron emission device. The electron emission device includes a base substrate; an insulating layer disposed on a surface of the base substrate; a cathode electrode formed on the insulating layer; a gate electrode that is formed on the base substrate, separated from the cathode electrode, and higher than the cathode electrode; and an electron emission layer that is electrically connected to the cathode electrode and disposed to face the gate electrode.
Abstract:
A field emission device for use as a backlight of a liquid crystal display comprises a conductive anode having a light-emitting layer and a cathode separated from the anode by a spacer. The cathode comprises nanofiber electron emitters. For example, the nanofiber electron emitters comprise a substrate, a conductive film adhered to the substrate and a plurality of isolated, hemispheroidal nanofiber clusters that are capable of emitting electrons at high current density and low field strength.
Abstract:
In a field emission backlight unit, a method of driving the same, and a method of manufacturing a lower substrate, the field emission backlight unit includes: a lower substrate; first and second electrodes alternately formed in parallel lines on the lower substrate; emitters interposed between the lower substrate and the first electrodes; an upper substrate spaced a predetermined distance from the lower substrate and facing the lower substrate; a third electrode formed on a bottom surface of the upper substrate; and a phosphor layer formed on the third electrode. The driving method comprises applying a cathode voltage to the first electrodes and a gate voltage to the second electrodes, followed by reversing the application of the voltages to the first and second electrodes. The manufacturing method comprises forming and drying or firing a patterned carbon nanotube (CNT) layer, and then pattering, drying and firing a conductive thick film.
Abstract:
A backlight device (100) includes a light source (110) and a light guiding plate (120). The light source includes a cathode (111); a nucleation layer (112) formed on the cathode; a field emission portion (102) formed on the nucleation layer; and a light-permeable anode (117) arranged over the cathode. The field emission portion includes an isolating layer (113) formed on the cathode; a plurality of isolating posts (114) disposed on the isolating layer; and a plurality of field emitters (115) located on the respective isolating posts. The light guiding plate includes an incident surface (121) facing the light-permeable anode and adapted for receiving light emitted from the light source.
Abstract:
A light-emitting device includes electron emitters for planarly emitting electrons, collector electrodes disposed to face corresponding one electron emitter, and a phosphor formed near the collector electrodes. During a period when electrons are emitted from the electron emitter, a collector voltage is applied to each of the collector electrodes in the sequence. Electrons are attracted toward a region of the phosphor in the vicinity of the collector electrode to which the collector voltage is applied, and impinge on the region of the phosphor, whereby light is emitted therefrom. The remaining region of the phosphor emit afterglow.
Abstract:
A double-sided luminous compound substrate is disclosed. The double-sided luminous compound substrate comprises: a first transparent substrate, having a plurality of first conductors parallel disposed on a surface thereof, and a plurality of parallel-disposed second conductors overlapping the first conductors, each first conductor having a plurality of emitters equidistantly disposed thereon and electrically connected thereto; a second transparent substrate, disposed parallel to and opposite to the first transparent substrate, further comprising a fluorescence layer formed on the side facing the first transparent substrate; and a plurality of spacers, disposed between the first and second transparent substrates.
Abstract:
Provided are a low-temperature formation method for emitter tips including copper oxide nanowires or copper nanowires and a display device or a light source manufactured using the same. The low-temperature formation method includes preparing a substrate having an exposed copper surface. The copper surface contacts an oxide solution at a low temperature of 100° C. or less to grow copper oxide nanowires on the surface of the substrate. Optionally, a reduction gas or a heat is supplied to the copper oxide nanowires, or plasma processing is performed on the copper oxide nanowires, thereby reducing the copper oxide nanowires to copper nanowires. Thus, emitter tips including copper oxide nanowires or copper nanowires are formed densely at a low temperature such that the emitter tips have a shape and length suitable for emission of electrons.
Abstract:
A field emission lamp (30) includes a tube (31) having a closed end and an open end, an encapsulation board (38) mated with the open end, an anode layer (32) formed on an inner surface, a fluorescence layer (33) formed on the anode layer, a cathode down-lead pole (342) located at the encapsulation board, a cathode fixing pole (341) located at the closed end, a cathode filament (34) having a carbon nanotube layer formed on a surface thereof fixed between the cathode down-lead pole and the cathode fixing pole, an anode down-lead ring (321) located at the anode layer near the open end, and an anode down-lead pole (322) located at the encapsulation board and electrically connected with the anode down-lead ring. The field emission lamp has a simple structure, thereby having an enhanced production rate and a reduced cost.
Abstract:
A lighting element (1) containing a dielectric layer (5) of a metal oxide with a front surface and a back surface, where the dielectric layer (5) contains an arrangement of elongated pores (8) extending between front and back surfaces through the dielectric layer (5) and the pores (8) are open to the front surface, and a base electrode (7) made from an electrically conductive material is arranged on the back surface, and in the pores (8) are arranged emitter rods (4) of an electrically conductive material, and a translucent layer of counter-electrode (2) of an electrically conductive material is arranged over the front surface of the dielectric layer (5), and a layer of luminescent material (3) is arranged between the dielectric layer (5) and the base electrode (7). The layer of counter-electrode (2) is a part of the layer system of the lighting element (1), where the dielectric layer (5) has the function of a spacer and separates the base electrode (7) from the counter-electrode (2).
Abstract:
A ballistic electron surface-emitting device (BSD) emitter that can be used in a field emission display (FED). The emitter being made of metallic carbon nanotubes extending in a direction that is normal to a surface of the cathode. The carbon nanotubes are designed so that electrons therein can experience a ballistic effect where the mean free path between collisions is as large or larger than a length of the carbon nanotube and that the width of the carbon nanotube being a fermi wavelength. On an opposite end of the carbon nanotubes is a thin metal electrode layer and a thin insulating layer to protect the carbon nanotubes from damage.