Abstract:
The present invention relates to a method of manufacturing a wiring board comprising: a build-up layer, in which wiring patterns are piled with insulating layers; and a core substrate, which is separately formed from the build-up layer, the method comprising the steps of: separably forming the build-up layer on a plate-shaped support; electrically connecting the core substrate to the wiring patterns of the build-up layer on the support; and removing the support from the build-up layer so as to form the wiring board, in which the build-up layer is connected to the core substrate. By separably forming the build-up layer and the core substrate, the wiring board effectively exhibiting characteristics thereof can be produced.
Abstract:
The present invention relates to a polyimide composite flexible board and a process for preparing the same. The process comprises sequentially applying polyamic acids individually having a coefficient of thermal expansion (CTE) after imidization of more than 20 ppm and less than 20 ppm on a metal foil, subsequently subjecting the polyamic acids to imidization into polyimide by heating, to produce a polyimide composite flexible board, which is used as a printed circuit flexible board.According to the present invention, it can obtain a polyimide composite flexible board having an excellent mechanical property, high heat resistance, and excellent dimension stability, and no warp without using an adhering agent.
Abstract:
An IC package is disclosed that comprises a core region disposed between upper and lower build-up layer regions. In one embodiment, the core region comprises a low modulus material. In an alternative embodiment the core region comprises a medium modulus material. In an alternative embodiment, the core material is selected based upon considerations such as it modulus, its coefficient of thermal expansion, and/or the resulting total accumulated strain. In an alternative embodiment, boundaries with respect to the softness of the core material are established be considering the reflective density in opposing conductive build-up layers above and below the core region.
Abstract:
A solvent cast film comprises a polyimide comprising structural units derived from polymerization of a dianhydride component comprising a dianhydride selected from the group consisting of 3,4′-oxydiphthalic dianhydride, 3,3′-oxydiphthalic dianhydride, 4,4′-oxydiphthalic dianhydride, and combinations thereof, with a diamine component wherein the polyimide has a glass transition temperature of at least 190° C.; wherein the film has a coefficient of thermal expansion of less than 60 ppm/° C., a thickness from 0.1 to 250 micrometers, and less than 5% residual solvent by weight; wherein the polyimide has less than 15 molar % of structural units derived from a member selected from the group consisting of biphenyltetracarboxylic acid, a dianhydride of biphenyltetracarboxylic acid, an ester of biphenyltetracarboxylic acid, and a combination thereof.
Abstract:
To provide a component mounting substrate and a component mounting structure which absorb stresses caused by impact or by the difference in the thermal extension coefficient between substrate and component, without increasing the required accuracy in soldering the substrate and the component together. The substrate, which is to be mounted with a component having one or more solder joints via which the component is connected to the substrate, has a depressed part thereof formed on its component side, on which one or more electrodes are provided to be closely joined with the solder joints. The depressed part is filled with a filling material with rigidity different from that of a material making up the substrate body, such that the filling material is flush or almost flush with the surface of the component side of the substrate.
Abstract:
A manufacturing method for a substrate with a stiffener is disclosed, the substrate being capable of ensuring a good flatness of a printed board when heated to a high temperature and then cooled. The method comprises a first step of preparing a printed board and a stiffener, the printed board including a wiring part and an insulating part formed of an organic insulating material, and the stiffener being formed of a material with a smaller coefficient of thermal expansion than that of the material of the printed board, and a second step of bonding the printed board and the stiffener with a thermosetting adhesive. In the second step, a curing process temperature for curing the thermosetting adhesive is equal to or higher than the glass transition point of the organic insulating material.
Abstract:
A package board module wherein a semiconductor chip such as an LSI is mounted on the topside surface of a package board, and a package mounted module wherein the package board is mounted on the motherboard of a large-sized computer or the like. A stiffener for supporting the package board and/or a stiffener for supporting the motherboard each has a bimetal structure wherein a first member and a second member having mutually different thermal expansion coefficients are respectively adhered to each other, so as to cause the stiffeners to warp in harmony with the warpage of the package board and the motherboard caused by a temperature change, thereby preventing stress from arising in the solder-bonded portions.
Abstract:
The present invention provides a low-profile and light-weight semiconductor device having improved product reliability and higher frequency performance. A multi-layer interconnect line structure is disposed just under circuit devices 410a and 410b. An Interlayer insulating film 405 that composes a part of the multi-layer interconnect line structure is formed of a material having a relative dielectric constant within a range from 1.0 to 3.7, and a dielectric loss tangent within a range from 0.0001 to 0.02.
Abstract:
Printed wiring boards are disclosed that include regions having different coefficients of thermal expansion. In one aspect of the invention, the regions can be matched to the coefficients of thermal expansion of devices mounted on the printed wiring board. In one embodiment, the invention includes a layer including a base material and at least one insert material that are combined using a resin. In addition, the base material and insert material are located within the same plane.
Abstract:
A power semiconductor module having an integral circuit board with a metal substrate electrode, an insulation substrate and a heat sink joined is disclosed. A SiC semiconductor power device is joined to a top of the metal substrate electrode of the circuit board. A difference in average coefficients of thermal expansion between constituent materials of the circuit board in a temperature range from room to joining time temperatures is 2.0 ppm/° C. or less, and a difference in expansion, produced by a difference between a lowest operating temperature and a joining temperature, of the circuit-board constituent materials is 2,000 ppm or less.