Abstract:
A method of fabricating electroplate solder on an organic circuit board for forming flip chip joints and board to board solder joints is disclosed. In the method, there is initially provided an organic circuit board including a surface bearing electrical circuitry that includes at least one contact pad. A solder mask layer that is placed on the board surface and patterned to expose the pad. Subsequently, a metal seed layer is deposited by physical vapor deposition, chemical vapor deposition, electroless plating with the use of catalytic copper, or electroplating with the use of catalytic copper, over the board surface. A resist layer with at least an opening located at the pad is formed over the metal seed layer. A solder material is then formed in the opening by eletroplating. Finally, the resist and the metal seed layer beneath the resist are removed.
Abstract:
A filet F is added to a portion constituting a corner portion C equal to or smaller than 90null in a crossing portion X of wiring patterns 58b, 58c and 58d, and a wiring pattern 58 is formed. Since the filet F is added, the wiring patterns are not made thin and are not disconnected in the crossing portion X. Further, since there is no stress concentrated to the crossing portion X, disconnection is not caused in the wiring patterns and no air bubbles are left between the crossing portion X of the wiring patterns and an interlayer resin insulating layer so that reliability of a printed wiring board is improved.
Abstract:
The present invention provides a method of filling an at least one aperture in a semiconductor substrate by placing a sacrificial carrier structure on a surface of the substrate, wherein the structure comprises, a first layer, a fill material over the first layer, and a mask over the fill material having at least one opening therein, such that the opening at least partially aligns with the aperture in the substrate. Thereafter, the fill material is forced into the aperture by the application of heat and pressure, and the sacrificial carrier structure is removed.
Abstract:
A method of making a circuitized substrate having plated through holes free of filler material is provided. The method includes the steps of providing a dielectric substrate having first and second opposite faces. At least one via hole is formed from one face to the other. A first electrically conductive layer is applied onto the top and bottom faces of the dielectric member and onto the side wall of the via. First layers of photoresist are applied to each layer of conductive material and entering at least partially into the via hole. The first layers of photoresist are selectively exposed and developed to remove all of the photoresist, except that photoresist which is disposed in the via holes. Thereafter, a portion of the faces of the metal coatings on the surfaces of dielectric material and any photoresist remaining in the holes extending above the layers of electrically conductive material are removed to form a planar surface thinner than the thickness of the metal in the through hole. Thereafter, a second layer of photoresist material is applied to both the surfaces of the metal on both faces of the dielectric material and exposed to a desired circuit pattern. Thereafter, the second layers of the photoresist material are developed to reveal the underlying metal which is then etched to form a circuit pattern in the metal layer on both faces. Thereafter, the second layers of the remaining photoresist are stripped and also the photoresist remaining in the hole is stripped, thereby to provide a circuitized substrate with plated through holes having an opening extending from the upper face of the substrate to the lower face of the substrate.
Abstract:
A filling system includes a pressurized source of fill material and a pressure fill head wherein the fill head also includes a heating element positioned so as to transfer heat to fill material passing through the fill head. A method of filling holes using a fill material passing through a pressure fill head includes the steps of causing fill material to enter the fill head, modifying the viscosity of the fill material while it is within the fill head, and causing the modified viscosity fill material to exit the fill head and enter at least one hole.
Abstract:
A multilayer printed wiring board which permits the formation of fine wiring patterns, thereby increasing the density of wiring patterns. Using photosensitive glass having a coefficient of thermal expansion close to that of a copper film as a core substrate, a through hole is formed in the photosensitive glass by photolithography, a sputtering silicon oxide layer and a sputtering silicon nitride layer are formed to prevent leak of alkali metal ions from the photosensitive glass, a sputtering chromium layer, a sputtering chromium-copper layer and a sputtering copper layer are formed to enhance the adhesion strength between the copper film and the sputtering silicon oxide layer, and a copper film of 1 to 20 nullm thick is formed. With resin filled into the interior of the through hole, a wiring layer is patterned by etching, an insulating layer is formed, and the surface is covered with a surface treatment layer and a cover coat.
Abstract:
A method of making a printed circuit board whereby a fine wiring pattern can be formed. A through hole is formed in a substrate, both surfaces of the substrate being covered with copper foil. The substrate is treated with a catalyst and plated with copper. The through hole is filled with an insulating material, and the copper layer on the substrate is etched so that the catalyst layer is not exposed, leaving a thinned copper layer. Then, the substrate surfaces are ground and leveled by removing any projecting insulating material. Thereafter, another copper layer is deposited on the surface of the substrate, including surface regions on the fill material and is circuitized to form a wiring pattern. Since the catalyst layer is not exposed when the copper layer on the substrate is thinned, a fine wiring pattern can be obtained without the problem of subsequent peeling of the wiring conductors, or the entrapment of air.
Abstract:
An apparatus for manufacturing a plug and the manufacturing method. The method includes the following steps. A baseplate located in the bottom of a closed printing chamber is provided. A printed circuit board and a stencil are mounted on the baseplate in sequence. The stencil is aligned to the printed circuit board. An amount of preheated paste is placed on the stencil. A pressure of the closed printing chamber is adjusted to a first pressure. A printing step is performed to form plugs in the printed circuit board. The pressure of the closed printing chamber is adjusted to a second pressure to remove voids trapped in the plugs. The pressure of the closed printing chamber is adjusted to a third pressure. A scraping step is performed to remove the redundant paste.
Abstract:
An electronic component device includes a printed wiring board having a side surface terminal portion formed of a recessed groove, filler, and plating conductor. The recessed groove is formed in a side surface, or a corner adjacent to the side surface, of a board and extending from an upper surface to a lower surface. The filler fills the groove and has a plating catalytic function. The plating conductor covers an exposed surface of the filler. A method of manufacturing the electronic component device is also disclosed.
Abstract:
A printed wiring board is formed by a printed wiring substrate having a plurality of a wiring layer, and a thermal expansion buffering sheet having lower coefficient of thermal expansion than that of said printed wiring substrate, which is integrally laminated on a surface of the printed wiring substrate.