Abstract:
In one embodiment, a method of forming an out-of-plane electrode includes forming an oxide layer above an upper surface of a device layer, etching an etch stop perimeter defining trench extending through the oxide layer, forming a first cap layer portion on an upper surface of the oxide layer and within the etch stop perimeter defining trench, etching a first electrode perimeter defining trench extending through the first cap layer portion and stopping at the oxide layer, depositing a first material portion within the first electrode perimeter defining trench, depositing a second cap layer portion above the deposited first material portion, and vapor releasing a portion of the oxide layer with the etch stop portion providing a lateral etch stop.
Abstract:
Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
Abstract:
A method of manufacturing a wiring substrate including a step of forming a through hole that includes forming a first concave portion in a substrate that extends from a second surface to a first insulating layer without passing through the first insulating layer; forming a second insulating layer at least within the first concave portion; and forming a second concave portion through the second insulating layer and the first insulating layer to expose a surface of a pad electrode, wherein the second concave portion is formed within the first concave portion; and filling the first concave portion and the second concave portion with a conductive body or forming the conductive body to coat inner walls of the first concave portion and the second concave portion, and forming the through electrode such that it is connected to the pad electrode.
Abstract:
A device includes a base substrate (700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from the component (702). It also includes spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via the spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) includes vias (710) including metal for providing electrical connection through the capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.
Abstract:
Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
Abstract:
A MEMS device is provided in which, in order to suppress generation of a gas from an inner wall of a space in which a MEMS portion is disposed, the MEMS portion is disposed in a space constituted by at least a silicon nitride film and a silicon film, the silicon film has a first hole, the first hole is filled with a metal film or a metal silicide, and an airtight structure is formed by the metal film or the metal silicide, the silicon nitride film, and the silicon film.
Abstract:
Microelectromechanical systems (MEMS) having contaminant control features. In some embodiments, a MEMS die can include a substrate and an electromechanical assembly implemented on the substrate. The MEMS die can further include a contaminant control component implemented relative to the electromechanical assembly. The contaminant control component can be configured to move contaminants relative to the electromechanical assembly. For example, such contaminants can be moved away from the electromechanical assembly.
Abstract:
In an electronic-component package made up of a laminated-ceramic, cavity-forming base and an electroconductive lid that is hermetically bonded to the base by a heat-melting sealant, contamination of electromagnetic-interference-reducing grounding metallization lines by melted sealant is prevented. A wall-portion grounding metallization line partially embedded in an enclosing wall portion of the base, and partially exposed to the package cavity, electrically connects lid, when sealant-bonded to the wall portion of the base, with a grounding external terminal on the base exterior. An electronic-component grounding metallization line exposed in the bottom of the base is connected to the grounding external terminal. A connecting portion that joins the wall-portion and electronic-component grounding metallization lines is disposed between laminations of the bottom and wall portions of the base, where the connecting portion is unexposed to the package cavity.
Abstract:
A MEMS element includes: a substrate; a first electrode formed above the substrate; and a second electrode having a support portion and a beam portion, the support portion being formed above the substrate, the beam portion extending from the support portion, being formed in a state of having a gap between the first electrode and the beam portion, and being capable of vibrating in a thickness direction of the substrate. The width of the beam portion decreases with distance from a base of the beam portion toward a tip of the beam portion. The central length of the beam portion is larger than the lengths of ends of the beam portion. The width of the base of the beam portion is larger than the central length of the beam portion.
Abstract:
A MEMS structure includes: a substrate; a lower electrode disposed on the substrate; an upper electrode including a movable portion disposed facing and spaced from the lower electrode; and a reinforcing portion disposed in the upper electrode so as to extend along an extending direction of the movable portion, the reinforcing portion being composed of a material having a higher Young's modulus than the upper electrode.