Abstract:
A method of manufacturing a micromechanical component has the steps: providing a substrate having a front side and a back side; structuring the front side of the substrate; at least partially covering the structured front side of the substrate with a protective layer containing germanium; structuring the back of the substrate; and at least partially removing the protective layer containing germanium from the structured front side of the substrate.
Abstract:
The invention relates to a microbeam oscillator. Tuning of the oscillator is carried out by addition or subtraction of material to an oscillator member in order to change the mass of the oscillator member.
Abstract:
A device structure is defined in a single-crystal silicon (SCS) layer separated by an insulator layer, such as an oxide layer, from a handle wafer. The SCS can be attached to the insulator by wafer bonding, and is selectively etched, as by photolithographic patterning and dry etching. A sacrificial oxide layer can be deposited on the etched SCS, on which polysilicon can be deposited. A protective oxide layer is deposited, and CMOS circuitry and sensors are integrated. Silicon microstructures with sensors connected to CMOS circuitry are released. In addition, holes can be etched through the sacrificial oxide layer, sacrificial oxide can be deposited on the etched SCS, polysilicon can be deposited on the sacrificial oxide, PSG can be deposited on the polysilicon layer, which both can then be patterned.
Abstract:
In a method for manufacturing a semiconductor acceleration sensor, a movable portion including a mass portion and movable electrodes is formed in a single crystal silicon thin film provided on a silicon wafer through an insulation film by etching both the single crystal silicon thin film and the silicon wafer. In this case, the movable portion is finally defined at a movable portion defining step that is carried out in a vapor phase atmosphere. Accordingly, the movable portion is prevented from sticking to other regions due to etchant during the manufacture thereof.
Abstract:
A manufacturing method for a micromechanical component, and in particular for a micromechanical rotation rate sensor, which has a supporting first layer, an insulating second layer that is arranged on the first layer, and a conductive third layer that is arranged on the second layer. The method includes the following steps: provide the second layer, in the form of patterned first and second insulation regions, on the first layer; provide a first protective layer on an edge region of the first insulation regions and on a corresponding boundary region of the first layer; provide the third layer on the structure resulting from the previous steps; pattern out a structure of conductor paths running on the first insulation regions, and a functional structure of the micromechanical component above the second insulation regions, from the third layer; and remove the second layer in the second insulation regions, the second layer being protected in the first insulation regions by the first protective layer in such a way that it is essentially not removed there.
Abstract:
The present invention relates to a new process of the cantilever structure in the micro-electro-mechanical system (MEMS), and more particularly, to a process that could overcome the contamination problem on the undesired areas during the thin-film growth. Their advantages include not only to substitute the complex technique with sacrificial layer, but also to increase the yield for its simple structure and to deal the sub-micron microelectromechanical system technology for the mature stage on the wet-etching skill.
Abstract:
The microbridge structure comprises a substrate layer provided with two first electrical contacts, a microstructure provided with two second electrical contacts, and a micro support for suspending the microstructure over and at a predetermined distance from the substrate layer. The micro support extends along a vertical axis. The micro support has a central upper cavity extending along the vertical axis within the micro support. The micro support has a lower end connected to the substrate layer and an upper end connected to the microstructure for supporting the microstructure with respect to the substrate layer. The micro support is a multilayer micro support comprising two conductive paths and a layer made of dielectric material. The conductive paths and the layer of the micro support extend from the upper end to the lower end thereof. The two conductive paths connect respectively the two first contacts to the two second contacts. The present invention is also concerned with a method for forming a microstructure suspended by a micro support.
Abstract:
Semiconductor component with monolithically integrated electronic circuits and monolithically integrated sensor/actuator, whereby the sensor/actuator is manufactured with methods of surface micromachining in a sensor layer (3) of polysilicon that is structured, for example, with sensor webs (6), and these sensor webs (6) are thermally insulated from a silicon substrate (1) by a cavity (4) that is produced in a sacrificial layer (2) and is closed gas-tight toward the outside with a closure layer (5).
Abstract:
Disclosed is a method of fabricating a precision etched, three dimensional device from a silicon wafer, wherein the etching is done from one side of the wafer using a two step silicon etching process. A two-sided deposition of a robust protective layer, such as polycrystalline silicon, is placed over a two-sided deposition of a chemical masking layer such as silicon dioxide. The two layers are concurrently patterned with first and second sets of vias on one side of the wafer, while the opposite side is protected by the protective layer. The protective layer is removed to permit deposition of a second masking layer such as silicon nitride, followed by deposition of a second protective layer. Again, the second protective layer prevents damage to the fragile second masking layer on the wafer backside while its frontside is patterned with a similar set of vias aligned with the first set of vias in the first masking layer. This similar set of vias is sequentially formed in both the second protective layer and the underlying second masking layers. Then the wafer is placed in an etchant bath so that the first set of recesses is anisotropically etched in the wafer frontside side. Next, the second protective layer and second masking layer are removed to permit anisotropic etching of the second set of recesses through the second set of vias in the first masking layer. If the protective layer is polycrystalline silicon, it is concurrently etch-removed during the initial etching of the silicon wafer.
Abstract:
A protective member forming apparatus includes an ultraviolet radiation applying table that supports a workpiece on a support surface of a support plate thereof through which ultraviolet rays are transmittable, a delivery unit that holds a resin sheet to which the workpiece is fixed, to unload the workpiece from the ultraviolet radiation applying table, a resin supply unit that supplies an ultraviolet-curable liquid resin to the resin sheet placed on the support surface, a pressing unit that presses the workpiece from a reverse side thereof toward the liquid resin supplied to the resin sheet placed on the support surface, and an ionizer unit that ejects ionized air to the support surface of the ultraviolet radiation applying table.