Abstract:
The system provides for controlling color reproduction of input color image data representing one or more pages or page constituents in a network having nodes (or sites). Each one of the nodes comprises at least one rendering device. The system distributes the input color image data from one of the nodes to other nodes, and provides a data structure (virtual proof) in the network. This data structure has components shared by the nodes and other components present only at each node. Next, the system has means for providing color calibration data at each node characterizing output colors (colorants) of the rendering device of the node, and means for producing at each node, responsive to the color calibration data of the rendering device of the node, information for transforming the input color image data into output color image data at the rendering device of the node. The information is then stored in the data structure in different ones of the shared and other components. Means are provided in the system for transforming at each node the input color image data into output color image data for the rendering device of the node responsive to the information in the data structure. The rendering device of each node renders a color reproduction of the page constituents responsive to the output color image data, wherein colors displayed in the reproduction at the rendering device of each node appear substantially the same within the output colors attainable by the rendering devices. The system further has means for verifying at each node that the information for the rendering device of the node properly transformed the input color image data into the output color image data, and means for revising the information stored in the data structure at the node responsive to results of the verifying means. Shared components of the data structure may also store color preferences selected by a user. The information producing means of the system may further operate responsive to both the color calibration data and the color preferences. The rendering devices in the system can provide color reproductions having three or four colorants, and may provide more than four output colors (color inks).
Abstract:
A method for determining the optimal colorant thicknesses and linear combinations for integral illuminant-weighted CIE color-matching filters is provided. A reflectance colorimeter for configuring printers may be designed using this method.
Abstract:
In evaluating whiteness of light from a light source or a luminaire, whiteness W is given by the following equation, W=−5.3C+100, wherein chroma C is determined by the CIE 1997 Interim Color Appearance Model (Simple Version).
Abstract:
Disclosed herein is a method for selecting and specifying an appearance of a surface of a coated article, such as an automobile or truck body.
Abstract:
A method, combination or apparatus for compensating for or predicting the shift in the human perception of colour which occurs when the colour is seen on a small surface area as compared with when it is seen extending over of large surface area. The compensation or prediction is performed by increasing (compensation) or decreasing (prediction) the lightness and chroma of the colour in a specified way. The invention allows choosers of colour to take account of the shifts when making their choice of colours and is useful in choosing colours for paints, plastics, textiles or illuminated surfaces.
Abstract:
A system for authenticating sampled objects including a database, a plurality of spectrum measuring devices, and a plurality of computers. The database stores a plurality of reference patterns measured from known reference objects. Each of the spectrum measuring devices measures a region of respective sampled objects so as to produce spectral content information identifying the sampled objects. The spectral content information includes information indicative of colors inside the visible spectrum of the human eye. The computers have access to spatial analysis software. The computer receives the spectral content information identifying the sampled object and provides the spectral content information to the spatial analysis software to generate a unique measured pattern. The spatial analysis software compares the unique measured pattern with the reference patterns stored in the database, and outputs signals indicative of matches between the unique measured pattern with the reference pattern within a tolerance level whereby the colors of the regions of the sampled objects are utilized to authenticate the sampled objects.
Abstract:
The invention provides methods, systems and apparatus for assigning color names to individual image pixels, and generating verbal description of color composition in images, suitable for a wide variety of information processing applications. For an isolated image pixel (individual color sample or color value) an illustrative embodiment of this invention uses a predetermined vocabulary of color names, and then generates a distance measure describing the best color match and corresponding color name for the given pixel. For the input image, an illustrative embodiment of this invention computes the simplified representation of the scene, consistent with human perception, and uses the predetermined vocabulary, syntax rules and metric to assign color names to all perceptually significant objects and regions and obtain the verbal description of the overall color composition. The invention is also applicable to other types of information signals, such as sequences of video frames, web pages, etc.
Abstract:
A system and method for identifying primary color chromaticity coordinates of a red, green and blue light sources includes a tristimulus filter the receives the combined light generated by the light sources. The light sources are preferably a group of red, green and blue light emitting diodes. A processor is configured to generate a plurality of test control signals that sets a desired intensity value for each of the red, green and blue LEDs. Based on these test control signals, the system is configured to measure three sets of chromaticity coordinates corresponding to the combined light generated by these red, green and blue LEDs. The processor thereafter calculates the color chromaticity coordinates of the LEDs, based on the measured coordinates of the combined light, and the intensity values of the LEDs, and the intensity values of the combined light. This calculation in accordance with one embodiment of the invention is accomplished by solving a matrix equation. Once the color coordinates of the individual light sources is uniquely calculated, the system measures the intensity values of light for each of the light sources that is necessary to provide a combined light with a desired color chromaticity coordinates. These intensity values can be used in a feedback control circuit to maintain the desired combined light as the LEDs change their characteristics from batch to batch or over time.
Abstract:
The present invention provides a plurality of representations of color that are stored in an electronic color library and that can be selected by a user. After a color selection is made, a plurality of color ink formulas and/or colorant formulas capable of producing the selected color are provided. Further, other selections can be made to define a substrate or other criteria that can impact the color ink formulas. A plurality of color ink and/or colorant formulas are provided and optimized in order to reduce or eliminate undesired effects caused by metamerism. The formulas can be transmitted over a communication network, such as the Internet or a local Intranet to another party, such as color products manufacturers.
Abstract:
A calibration camera device for geometrical correction or color correction, including an optical lens part, an optical filter part which is provided in front of the optical lens part and to which at least three optical filters are attached, a filter switching part to select any one from among the optical filters and dispose the selected one optical filter at a photometric point, a near-infrared light cutting part which is provided in the rear of the optical lens part and to which a near-infrared light cutting filter is attached, a monochrome capturing part which is provided in the rear of the near-infrared light cutting part and includes a monochrome imaging element, an image storing part for storing a monochrome image which is captured by the monochrome capturing part, and a gain correction part for conducting sensitivity correction on the monochrome image.