Abstract:
The invention relates to a computer readable medium that includes one or more programs for carrying out a method for restoration of a patient's tooth. The method includes the steps of generating an electronic image of a patient's tooth; providing a preliminary treatment plan for addressing the dental needs of the patient; and forwarding the electronic image and preliminary treatment plan to a dental laboratory so that technician can evaluate the image and treatment plan and in a manner such that the technician and dentist can review and discuss the preliminary treatment plan.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associate color of a structure is also provided.
Abstract:
The invention relates to a method (100) for producing color elements of a shade guide. To this end, color values of known color elements (15) of shade guides (10) with similar lightness values, hues and chromata are initially ascertained. In another method step, the color values of each new color element are determined while increasing a color distance (16) between the lightness values, hues and chromata of the previously ascertained color values.
Abstract:
A non-contact type dental shade matching device is provided, comprising a camera body for capturing image of one or more target teeth; an opaque intra-oral compartment snugly adapted for a human mouth; an opaque cover shield body connected between the camera body and the intra-oral compartment; one or more holders for holding one or more shade tabs; and a color matching module being operably connected to the camera body to receive the captured images containing color and translucency information of the target tooth and/or shade tab information, and then to process the images based on a content-based algorithm for automatic shade matching between the target tooth and the shade tabs for each of the captured images, so as to achieve an optimal dental prosthesis.
Abstract:
An apparatus measuring optical characteristics including position detection is disclosed. A processor is coupled to a display. A first optical sensor makes a first measurement, and a second optical sensor makes a second measurement. A source of illumination and the first optical sensor determine a minimal distance between the apparatus and an external object such that illumination emitted by the source is not received by the first optical sensor when the apparatus is less than the minimal distance from the external object. A position of the apparatus with respect to an object and an optical property of light received by the apparatus are determined. A transparent member with a thickness less than the minimal distance may provide illumination external to the apparatus and receive light from external to the apparatus.
Abstract:
A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
An intra-oral imaging apparatus for obtaining an image of a tooth has an image capture apparatus with an imaging sensor that is energizable to obtain image data and one or more optical elements for directing light from the tooth to the imaging sensor. An illumination apparatus has one or more light sources energizable to emit light and a spatial light modulator that is configurable to shape an illumination beam from the emitted light. One or more optical elements relay the shaped illumination beam toward the tooth surface. A control logic processor in signal communication with the imaging sensor obtains image data and in signal communication with the spatial light modulator shapes the illumination beam according to the obtained image data.
Abstract:
The present invention generally relates to methods and systems to determine the properties of light-matter interaction in the characterization of food materials using an incident light source and a sensor to measure the opto-magnetic properties of light reflected from the food material. The opto-magnetic properties can be used to generate an opto-magnetic footprint. Comparison of the opto-magnetic footprint with opto-magnetic footprints of known materials enables characterization of the food materials. This enables detection of pesticide residues, confirmation of “organic” labeling, and determination of freshness of the food materials.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image (122) from the tooth and a second spectral range for exciting a fluorescence image (120) from the tooth. A polarizing beamsplitter (18) in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor (68), wherein the second polarization state is orthogonal to the first polarization state. A first lens (22) in the return path directs image-bearing light from the tooth toward the sensor (68), and obtains image data from the portion of the light having the second polarization state. A long-pass filter (15) in the return path attenuates light in the second spectral range.