Abstract:
A method of reflowing a polymer to form a spring or coil structure is described. A polymer is deposited over stress engineered thin film with an internal stress gradient. The polymer serves as a loading prevent release of the internal stress until a solvent vapor softens and reflows the polymer. As the polymer softens, the internal stress within the thin film is gradually released allowing controlled curling of the thin film out of a substrate plane. In one embodiment, the thin film forms the windings of a coil structure.
Abstract:
The present invention relates to an insulator as an insulating layer in a laminate which can inhibit dusting at the time of use, more particularly an electronic circuit component to which the insulator has been applied, particularly a wireless suspension. The insulator comprises a laminate of one or more insulation unit layers etchable by a wet process, the insulator having been subjected to plasma treatment after wet etching. The insulator exists mainly as an insulating layer in a laminate having a layer construction of first inorganic material layer—insulating layer—second inorganic material layer or a layer construction of inorganic material layer—insulating layer, and at least a part of the inorganic material layer has been removed to expose the insulating layer.
Abstract:
The present invention relates to an insulator as an insulating layer in a laminate which can inhibit dusting at the time of use, more particularly an electronic circuit component to which the insulator has been applied, particularly a wireless suspension. The insulator comprises a laminate of one or more insulation unit layers etchable byawet process, the insulator having been subjected to plasma treatment after wet etching. The insulator exists mainly as an insulating layer in a laminate having a layer construction of first inorganic material layer—insulating layer—second inorganic material layer or a layer construction of inorganic material layer—insulating layer, and at least a part of the inorganic material layer has been removed to expose the insulating layer.
Abstract:
A process for manufacturing a multilayer flexible wiring board, which allows individual layers of wiring boards to be precisely positioned and to be readily stacked. A mask for exposure is prepared in which a plurality of pattern holes corresponding to individual layers of wiring boards of a multilayer flexible wiring board are arranged in the direction perpendicular to the transporting direction P of substrate. This mask for exposure is used to form a plurality of wiring patterns corresponding to individual layers of wiring boards of a multilayer flexible wiring board on the same sheet-like substrate.
Abstract:
A method for forming a printed circuit board, and more particularly a method of forming a plated through hole (PTH), a blind via, and a buried via of printed circuit board. The method includes providing a two-layer board having a through hole therein, conformally forming a seed layer on the metal foil and in the through hole, forming a mask on the metal foil, having an opening aligned to the through hole to expose the seed layer on the through hole, forming a conductive layer on the exposed seed layer within the through hole, and removing the mask.
Abstract:
An improved interposer for use in forming an electrical connection between electrical components. The interposer includes a bi-lobate contact pad made of an elastomeric material embedded with conductive metallic granules.
Abstract:
The present invention provides non-heat cleaned glass fiber fabrics comprising resin compatible coatings that offer higher tensile strengths than corresponding fabrics that have been heat cleaned and silane finished. These fabrics can be used in a wide variety of applications, such as reinforcements for composites such as printed circuit boards. In one nonlimiting embodiment, the invention provides a non-heat cleaned fabric comprising a plurality of fiber strands in a warp direction and a fill direction, each fiber strand comprising a plurality of E-glass fiber, and having a resin compatible coating composition on at least a portion of a surface of at least one fiber strand, wherein the fabric has a tensile strength of at least 267 Newtons when measured in the warp direction or fill direction. Although not required, the fabric also has a tensile strength of at least 1.5 times that of a corresponding fabric that is heat cleaned by heating the corresponding fabric to a temperature of at least 380° C. for at least 60 hours and silane finished when measured in the warp direction or fill direction.
Abstract:
Disclosed herein are multi-layer double-sided wiring boards having an insulating layer with an opening, conductive layers on both surfaces of the insulating layer and on the inside of the opening, and an interface layer between the insulating layer and portions of the conductive layers wherein the conductive layers are in direct contact in the opening. Also disclosed are methods of fabricating such multi-layer double-sided wiring boards.
Abstract:
Provided is a process for creating vias for a circuit assembly including the steps of (a) applying a curable coating composition to a substrate, some or all of which is electrically conductive, to form an uncured coating thereon; (b) applying a resist over the uncured coating; (c) imaging the resist in predetermined locations; (d) developing the resist to expose predetermined areas of the uncured coating; (e) removing the exposed areas of the uncured coating; and (f heating the coated substrate of step (e) to a temperature and for a time sufficient to cure the coating. Also disclosed is a process of fabricating a circuit assembly.
Abstract:
The invention is directed to a process for patterning ceramic tape wherein a photoresist is applied to a ceramic tape, which enables the photoresist, after being exposed patternwise, and developed, to act as a development mask for the tape. The tape then undergoes a development stage, which ultimately removes undesired sections of tape. The tape contains polymeric binder(s) with acidic or alkaline functional pendant groups but not photosensitive ingredients. Therefore, the tape is aqueous processable but itself cannot be photoimaged. However, when this tape is used with conventional photoresists that have the development chemistry opposite from that of the tape, it allows the photoresist to be used as a development barrier layer for the tape.